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As cloud computing offers services to lots of users worldwide, pervasive applications from customers are hosted by large-scale
data centers. Upon such platforms, virtualization technology is employed to multiplex the underlying physical resources. Since
the incoming loads of different application vary significantly, it is important and critical to manage the placement and resource
allocation schemes of the virtual machines (VMs) in order to guarantee the quality of services. In this paper, we propose a
decentralized virtual machine migration approach inside the data centers for cloud computing environments. The system models
and power models are defined and described first. Then, we present the key steps of the decentralized mechanism, including
the establishment of load vectors, load information collection, VM selection, and destination determination. A two-threshold
decentralizedmigration algorithm is implemented to further save the energy consumption as well as keeping the quality of services.
By examining the effect of our approach by performance evaluation experiments, the thresholds and other factors are analyzed and
discussed.The results illustrate that the proposed approach can efficiently balance the loads across different physical nodes and also
can lead to less power consumption of the entire system holistically.

1. Introduction

Recently, as a newly emerged technology, cloud computing [1]
becomes a newparadigm for dynamic provisioning of various
services. It provides a way to deliver the infrastructure,
platform, and software as services available to consumers
in a pay-as-you-go manner [2]. Such typical commercial
service providers include Amazon, Google, and Microsoft. In
cloud computing environments, large-scale data centers [3]
are usually the essential computing infrastructure, which are
comprised of plenty of physical nodes with multiple virtual
machines running upon them.

The virtualization technology enables a novel model such
that customized virtual environments could be created upon
the physical infrastructure [4]. The use of virtualization
techniques provides great flexibility with the capability to
consolidate multiple virtual machines on a single physical
node [5]. In this way, the resource capacity allocated to
different virtual machines could be resized, and virtual
machines could also be migrated [6] across different physical
nodes ondemand to achieve various purposes. Recently,most

modern virtualization technologies products have realized
the notion of live or seamless migration of virtual machines
that involve extremely short downtimes ranging from tens of
milliseconds to a second [7]. Thus, the migration of virtual
machines has emerged as a promising technique to be utilized
by resource management algorithms to rapidly solve the
problems in virtualized data centers.

To fully utilize the underlying cloud resources, the
provider has to ensure that the services can be flexibly
delivered to meet various consumer requirements which are
usually specified by (service level agreements) SLAs [8], while
keeping the consumers isolated from the underlying physical
infrastructure. However, since the workloads of the different
applications or services fluctuate a lot as time elapses, it
is a challenge to adaptively manage the resource allocation
and make appropriate decisions. Thus, the potential benefits
of migrating virtual machines provide the opportunity to
address the issues of high performance concern of the service
provider.

On the other hand, as green computing [9] gains a lot of
attention due to significant energy consumption of large-scale
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data centers, the focus of the researcher is gradually shifted
from optimizing the pure performance to optimizing the
energy efficiency while maintaining high quality of services.
Consequently, the energy costs become an important part
of the (total cost of ownership) TCO, which needs to be
suppressed from the point of the providers’ views. Under
such consideration, the proper migration of virtual machines
could also lead to more consolidation and thus release
some underutilized nodes, in order to further save energy
costs.

A number of approaches addressing the issues of resource
management for cloud computing have been proposed [10–
17]. Many of them are based on centralized architectures,
which are known to be not very scalable and might suffer
from fault-tolerant issues. For example, the crash of the
centralized resource arbiterwill disable all of the later possible
adaptive resource management actions, leading the whole
system into a static state. Under the demand of autonomy,
a truly decentralized solution is preferable, which brings
improved scalability and naturally fault tolerant.

Given this analysis above, the main objective of our work
is to design a decentralized virtual migration approach for
data centers in cloud computing environment. The aim of
the approach is to dynamically adjust the resource allocation
amount by migration and reduce possible energy wastes at
the same time. The main contributions of this paper include
the following: (1) the definition of system models and power
models for the cloud computing infrastructure discussed in
this paper; (2) the design and development of the autonomic
and decentralized mechanisms for dynamic virtual machine
management to satisfy service quality requirements and
reduce energy consumption as much as possible; (3) com-
prehensive performance evaluation results which illustrate
the effect and efficiency of the proposed approach, from the
aspects of SLA violation, power consumption, load-balancing
effects, and so on.

The rest of this paper is then organized as follows: in
Section 2 some related work in this area are presented and
discussed; the system models of the target data center we
studied is described in Section 3; in Section 4 we propose
the decentralized virtual machine management approach;
performance evaluation results are illustrated in Section 5;
finally, in Section 6, we conclude the paper with some final
remarks and future directions of this work.

2. Related Work

2.1. Virtualization-Based ResourceManagement for Cloud. As
the employment of virtualization facilitates the fine-grained
resource allocation in cloud environment, a number of
researchers have made efforts on the study of virtualization-
based resource management for cloud. Iqbal et al. [18]
implemented a prototype that actively monitors the response
time of each VM and adaptively scales up the application
to satisfy the SLA promise. Maniymaran and Maheswaran
[19] present a centralized heuristic algorithm to solve the
VM creation and location problem, using a local search
technique. Campegiani [20] proposed a genetic algorithm to

find the optimal allocation of virtual machines in a multitier
distributed environment. Almeida et al. [21] modeled each
VM in the system as an M/G/1 open queue and applied
Markov’s Inequality to estimate the SLA violation possibility.
Also, in our recent work [22], we have exploited model-
free methodologies to adaptively manage the resources and
energy consumption in virtualized environments.

However, froman architectural point of view, the resource
manager in the above research usually lies on a central
node as a single module, which is vulnerable to potential
failures. Hence, we turn to exploit decentralizedmanagement
approaches which could be a possible solution to address the
availability issues of the central control unit.

2.2. Virtual Machine Migration. Since most major virtu-
alization platforms support live migration within a local
area network (LAN), some work has been done to study
the migration mechanism and strategies of virtual machine
migration inside the data center. Abdul-Rahman et al. [7]
have surveyed relevant work in the area of migration-based
resource manager for virtualized environments and also
discussed several types of management algorithms. Liu et al.
[23] have investigated the performance and energy cost for
live VM migrations from both theory and practice. Choi et
al. [24] have presented a framework that autonomously finds
the VM migration thresholds at run time, using the history
resource utilization. Park et al. [25] proposed an automated
strategy for virtual machine migration in a self-managing
virtualized environment, as well as an optimization model
based on linear programming.

In contrast, in our work we employ a two-threshold
VM migration strategy to balance the loads across different
physical nodes in the data center, in order tomeet the varying
demands of user applications.

2.3. Power-Aware Resource Allocation Approaches. Besides
performance, energy consumption becomes another critical
design parameter in modern data center, and enterprise
environments, because it directly impacts both the power
deployment and operational cost. Hence, plenty of work
has focused on energy-aware and power-aware resource
allocation approaches. Krioukov et al. [26] presented an
energy agile cluster that is power proportional and exposes
slack. Zhu et al. [27] proposed several power-aware storage
cache management algorithms and also an online power-
aware cache replacement algorithm. Petrucci et al. [28]
presented a dynamic configuration support for specifying and
deploying power management policies in a platform running
multiple application services. Chen et al. [29] designed a
server provisioning and load dispatching algorithm which
aimed to save energy without sacrificing user experiences.

Similarly, as designing the decentralized VM migration
scheme, our work also considers power consumption as an
important metric too. Specifically, by migrating out VMs,
underutilized physical nodes could be released to save more
energy.
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Figure 1: Data center architecture.

3. System Models

In this section, the basic architecture of the target system is
described in detail as well as other model definitions. Then,
the decentralized mechanism will be introduced.

3.1. Large-Scale Data Centers for Cloud. The target cloud
environment we discuss in this paper is mainly a large-scale
data center, which is usually comprised of a great number of
physical nodes (PNs). The high-level system architecture is
shown in Figure 1. Upon the physical infrastructure, virtual
machines (VMs) are widely used to host many third-party
applications. Multiple VMs can be dynamically started or
stopped on a physical node according to incomingworkloads,
sharing the resources from the same physical devices. These
VMs can run applications based on different operating
system environments on a single physical node, providing
usability and flexibility for cloud end users. At the upper
level, end users obtain services from applications deployed
in multiple virtual machines, which are residing on the
underlying physical infrastructure.

Since the incoming workload varies significantly, the
resource demands of each VM will fluctuate a lot too. To
consolidate these workloads and release some underutilized
resources, VM can be dynamically migrated across different
physical nodes. In this way, some physical nodes could be
turned off or into sleep mode in order to save extra energy. In
Figure 1, we use “active” and “sleeping” to describe two types
of node states, which are represented in light green and grey
colors, respectively.

Besides, in the following problem discussion, we assume
there are 𝑁 physical nodes in the data center and 𝐾 virtual
machines running upon these nodes.

3.2. Power Model. Here, we present the power consumption
model used in this paper. Since CPU usually consumes much
more energy than the other parts of the computer, hereafter
we focus on managing the power consumption and usage of
CPU resources.

Most modern CPUs support Dynamic Voltage and Fre-
quency Scaling (DVFS) techniques to dynamically change its
own frequency to reduce energy wastes. Hence, we consider
that the CPU utilization is typically proportional to the
workload intensity, and the power consumption of a physical
node is mainly impacted by its current CPU utilization.

However, an idle physical node evenwith 0%utilization could
still consume a plenty of power. Let 𝛼 be the fraction of power
consume by an idle node compared to a full utilized node
and 𝜃 the current CPU utilization of the node. Then, we use
the power model defined as follows to compute the power
consumption of PN 𝑖:

𝑃
𝑖
= 𝛼 ⋅ 𝑃

MAX
𝑖
+ (1 − 𝛼) ⋅ 𝜃 ⋅ 𝑃

MAX
𝑖
, (1)

where𝑃MAX
𝑖

is the power consumption of PN 𝑖when it is fully
utilized (i.e., it reaches 100% of CPU utilization).

3.3. Decentralized Mechanism. To manage the resources
inside a large-scale data center, a central resource manager is
usually designed and implemented to adjust the systemwide
resources and make appropriate decisions. However, such
centralized manner is vulnerable facing single-point failure,
which might lead to an unmanaged status of the whole
system. Here, we propose a decentralized mechanism to
address such issues and provide guarantees for availability of
the VMmanagement actions in various cases.

As shown in Figure 2, each active node will send a load
index of itself to some other nodes during each control
interval. At the same time, it will receive some load indexes
from other active nodes. The sending targets are randomly
picked at each interval and will possibly change in the next
interval. Each node will add the load information it received
into its own load vector. Then, the average length of the load
vectors over all nodes will be equal to the number of load
indexed sending times, which is denoted as 𝜂 in this paper.

In this way, the nodes are sending and receiving infor-
mation to each other in a decentralized manner, without
a central manager on the upper level. Such exchange will
not be impacted even if some of the nodes fail to run or
crack due to some unpredicted reason. On the other hand,
the network flow would also be distributed and dispatched
among different nodes in this case, rather than concentrated
to a common node which receives all the information.

4. Decentralized Virtual Machine
Migration Approach

In this section, the decentralizedVMmigration approach and
resource management scheme will be presented, including
the details of how to select the target VM and how to
determine the destination node.

4.1. Load Vector Establishment. In order to make VMmigra-
tion decisions, load information have to be collected first on
each physical node. According to the decentralized working
mechanism, each physical node maintains a load vector to
receive load indexes from other peer nodes. Here, we use a
tuple to represent the load index LI, defined as follows:

LI = ⟨𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡, 𝑢𝑡𝑖𝑙⟩ , (2)

where src indicates where the load index information comes
from, dest indicates the ID of the target physical node that is
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Figure 3: Load vector establishment.

going to receive this load index, and util denotes the current
CPU utilization of the source node (as src indicates).

As shown in Figure 3, PN 𝑖 will receive load indexes from
other PNs and add them into the load vector of itself, which
could be implemented by an array or a queue. Each element
of the load vector contains information about the ID of the
source node and its current CPU utilization. After all the load
indexes in the current control interval have been received,
the load vector of PN 𝑖 could be established, which provides
necessary directions for later migration decisions.

4.2. Selecting a VM to Migrate. Since the VMs are hosting
different applications with varying workloads, the CPU uti-
lization of the physical nodes will change a lot over time.

When the CPU utilization is too high, exceeding a certain
level, some VMs should be migrated to other PNs to release
some resource capacity. On the other hand, if the CPU
utilization is too low, below a certain level, we regard the node
as “underutilized”, and the VMs on it should also be migrated
out to clear the load of this node. In this case, the blank node
with no jobs could be turned into sleeping state so that more
energy could be saved.

Hence, we introduce a double-threshold VM migration
strategy, with two predefined threshold values called “lower
threshold (LT)” and “upper threshold”, respectively. The aim
of setting the upper threshold is to preserve extra CPU
capacity for unpredicted workload rises and to prevent SLA
violations as much as possible. The objective of setting the
lower threshold is trying to switchmore physical nodeswhich
are not fully utilized into sleep mode, leading to much less
energy consumption than idling.

The pseudocode for the algorithm is presented in
Algorithm 1, which describes how to select a VM to migrate
on PN 𝑖 which is overloaded. Lines 1∼2 are the initialization
of getting the current utilization of PN 𝑖. Lines 3∼32 are loop
to select VMs one by one to migrate out until the current
utilization becomes less than the predefined upper threshold.

When the current utilization of PN 𝑖 is higher than
the upper threshold, there are three scenarios as shown in
Figure 4. In case (a), we can find a VM that if it is migrated
out, the resulted utilization of PN 𝑖 will be reduced to a
value lower than the upper threshold and higher than the
lower threshold. In this case, we only need to choose this
VM to migrate and end the selecting procedure, as shown
in lines 6∼16 of Algorithm 1. Otherwise, if we did not find
any VM meeting the requirements in case (a), the reason is
perhaps that all VMs utilize relatively little amount of CPU
capacity, as shown in case (b). In this case, several VMs will
be migrated out until the resulted utilization drops below the
upper threshold, as shown in lines 17∼29. The last scenario
is that we cannot find any VM in case (a) and (b). That is
probably because someVMoccupies toomuch CPU capacity
so that if it is selected, the utilization of PN 𝑖 will fall down
below the lower threshold, as shown in case (c). In this case,
the VM will not be selected, since the migration of this
VM will also cause overutilization on the target node. The
corresponding code is as shown in line 30. At last, line 31 is a
function to find a destination for the previously selected VM,
which will be elaborated in the next section.

If the utilization of a physical node is below the lower
threshold, we regard it as “underutilized”. Then, all the VMs
residing on the PN will be selected to migrate. The detailed
algorithm is omitted here due to space constraint.

4.3. Decide the Destination. After some VM is selected to
be migrated, the next necessary step is to find a migrating
destination for it. Here, we use a function called find-
Dest(vmToMig) to conduct the destination decision, which
will find a proper physical node for vmToMig according to the
BestFit strategy.The pseudo-code of the detailed algorithm is
shown as Algorithm 2.
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(1) double util=this.utilization; //get the current utilization of PN 𝑖
(2) VirtualMachine vmToMig=null;
(3) while (util >UT)
(4) {
(5) vmToMig=null;
(6) for each (vm in this.VMlist)
(7) {

(8) if (vm.toBeMigrated) continue; //skip the VMs that have been marked
(9) double vmutil=calcutilz(vm); //get the CPU utilization of vm
(10) if (vmutil > util-UT && vmutil <util-LT)
(11) { //case (a)
(12) util = util – vmutil;
(13) vmToMig=vm;
(14) break; //find a VM to migrate
(15) }

(16) }

(17) if (vmToMig==null)
(18) {

(19) for each(vm in this.VMlist)
(20) {

(21) if (vm.toBeMigrated) continue;
(22) double vmutil=calcutilz(vm);
(23) if (vmutil <util-LT)
(24) { //case (b)
(25) util = util – vmutil;
(26) vmToMig=vm;
(27) break; //find a VM to migrate
(28) }

(29) }

(30) if (vmToMig==null) break; //case (c)
(31) findDest(vmToMig); //find a destination for the current VM to migrate to
(32) }

Algorithm 1: Selecting a VM to migrate on PN 𝑖 which is overloaded.
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VM 1
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Figure 4: Some typical scenarios on overutilized nodes.

First, the utilization of the selected VM has to be com-
puted as shown in line 1. Then, the PN traverses all the load
indexes in its own load vector and try to find a target so that
if the VM is migrated there, the resulted utilization will be
between the lower threshold and the upper threshold. Among
such nodes, the algorithm is prone to choose the one with
minimum utilization currently, as shown in lines 2∼13.

As shown in lines 18∼24, if there is no such proper node
meeting the above requirements, we continue to find a target

with little resource utilization that its future utilization will
still be below the lower threshold evenwith an additionalVM.

Furthermore, if there is still not any target found during
the last two rounds, it means that there are no suitable nodes
which can accept an extra VM (maybe every active node is
too over-utilized). Then, the source node of vmToMig will
attempt to require a sleeping node to wake up and receive
the VM to be migrated, as shown in lines 25∼30. If it fails to
require any sleeping node successfully, the whole procedure
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(1) calculate the utilization of vmToMig as vmutil
(2) doubleminUtil=1.0;
(3) int bestTarget=−1;
(4) for each (li in LoadVector)
(5) { if (vmutil + li.util >=LT
(6) && vmutil + li.util <= UT)
(7) { if (li.util <minUtil)
(8) {

(9) minUtil=li.util;
(10) bestTarget=li.PNid;
(11) }

(12) }

(13) }
(14) if (bestTarget >0) //find target successfully
(15) { vmToMig.dest=bestTarget;
(16) return 0;
(17) }
(18) for each (li in LoadVector)
(19) {
(20) if (vmutil + li.util <=LT)
(21) { vmToMig.dest=bestTarget;
(22) return 0;
(23) }

(24) }
(25) int getSleepNodeID=requireSleepNode();
(26) if (getSleepNodeID < 0) return −1;
(27) else
(28) { vmToMig.dest=getSleepNodeID;
(29) return 0;
(30) }
(31) return −1;

Algorithm 2: Function findDest(vmToMig).

of finding destination will be terminated, and vmToMig will
not be migrated but still remain on its original physical node.

5. Performance Evaluation

In this section, we conduct a series of performance evaluation
experiments of the decentralized VM migration approach
proposed in Section 4. Since it is extremely difficult to
conduct repeatable large-scale experiments on real-world
infrastructure, we chose simulation methods to evaluate the
performance of the proposed approach. We used C#.NET
to develop an event-driven simulation environment, which
could simulate the workload variation, application behaviors,
task completion status, and energy consumption. Simulation
parameter settings are first described and then the results will
be illustrated later.

5.1. Parameter Settings. Wehave simulated a data center com-
prising 50 homogeneous physical nodes. Each node is mod-
eled to have a CPU capacity of 750MIPS. Power consumption
is defined according to the model presented in Section 3.2,
where 𝑃MAX

𝑖
is set to 259W according to the SPECpower

benchmark [30], and 𝛼 is set to 50%. Then, a physical node
consumes 129.5W with 0% CPU utilization and consumes

259W with 100% CPU utilization. Upon the underlying
physical infrastructure, there are 150 heterogeneous VMs
hosting different kinds of applications. The workload and
CPU demand of each VM varies as time elapsed. The initial
CPU demand, minimum and maximum demand, and the
variation amount of the VMs are set randomly according
to a uniformly distributed variable, which simulated the
independent fluctuation of different types of applications.

Furthermore, during the experiments, VM migration
decisions have to be made across a constant control interval
time, which is set to 60 seconds. Besides, we set the delay from
sending the load information to receiving the information
as 1 s, the VM migration time is set to 5 s, and the wakeup
time of a sleeping physical node is set to 15 s. The simulation
time of the entire experiment is 1440 minutes in total, which
simulates a whole day effect of system running.

Notably, the length of the load vector of each physical
node is set to 10, if not specified explicitly.

5.2. Threshold Analysis. In this subsection, we intend to
examine the performance of the decentralized VMmigration
approach when setting different lower and upper utilization
thresholds.
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First, the average SLA violation amount is recorded and
illustrated in Figure 5. As shown, we can see that increasing
the upper threshold beyond 40% helps to reduce SLA viola-
tion remarkably. However, the impact of the lower utilization
threshold is not regularly noticeable.The best result occurs at
LT = 10% and UT = 90%, and we will use this setting for the
following experiments if not specified explicitly.

Furthermore, we also investigate the number of VM
migration times with different lower and upper utilization
thresholds, and the results are illustrated in Figure 6. It can
be observed that as the lower threshold increases, the number
of VM migration times rises obviously. The reason is that as
the lower threshold increases, more physical nodes will judge
themselves as “underutilized” and more VM migrations will
be triggered to eliminate resource waste. On the other hand,
with the same lower threshold, higher upper threshold leads
to the reduction ofmigration times.This is because the that as
the upper threshold increases, the physical nodes are allowed
to hold more VM demands, and then fewer migrations will
be triggered due to overutilization.

When we jointly consider the results of Figures 5 and
6 together, it can be seen that although most results are
relatively good at the aspect of SLA violation when UT =
90%, higher LT will trigger more VMmigration times, which
incurs heavier overhead to the whole system. Synthetically,
we regard the combination of LT = 10% and UT = 90% as a
possible appropriate choice for later experiments.

5.3. Load Balancing Effect. Here, we intend to examine the
load balancing effect of the proposed decentralized approach.
The experiments are repeated using three different strategies
as follows.
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Figure 6: Number of VM migrations analysis with different lower
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(1) Static: In the initialization stage, the virtual machines
are allocated onto the physical nodes as long as the
utilization of each node does not reach 100%. Then,
the VM placement scheme will not change during the
system execution procedure.

(2) RR: In the initialization stage, the virtual machines
are allocated onto the physical nodes one by one in
a round robin manner, in order to balance the load
among multiple physical nodes. VM migration is not
supported in this strategy.

(3) DVM: As described in Section 4, load information is
collected in a decentralizedmanner between different
node pairs. Virtual machines will be dynamically
migrated according to the load distribution among
the physical nodes.

In this group of experiments, we compared the standard
deviation across all of the 50 physical nodes. The results are
shown in Figure 7. As it can be observed, the Static strategy
leads to large deviation value since the VMs are distributed in
an unbalancing way. When using RR strategy, although the
deviation is small during the first several rounds due to the
evenly distributed VMs in the initialization stage, the load
becomes remarkably unbalanced in later time periods. In
comparison, by dynamically migrating VMs among different
physical nodes using DVM strategy, the resource utilization
values are kept relatively more balanced, leading to the least
deviation among all nodes.

5.4. Energy Consumption. In this subsection, we focus on
the energy consumption of our approach compared to RR
strategy.The number of physical nodes and VMs are set to 50
and 100, respectively, in order to simulate a relatively lighter
workload scenario.
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The experimental results are shown in Figure 8. It is
notable that theDVM strategy achieves less power consump-
tion, leading to more than 20% energy savings. The reason is
that our approach considersmigratingVMs from the physical
nodes whose utilization is under the predetermined lower
threshold. In this way, the underutilized physical node could
be released and be turned into sleeping status, which incurs
much less power consumption than the idling state.

5.5. Impact of Load Vector Length. At last, we attempt to
investigate the impact of the load vector length on the
performance of our approach. The length of the load vector
determines howmany load indexes will be transferred during
the system execution. Longer load vector may provide more
information for the current physical node, but will also bring
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more overheads at the same time. We repeated several exper-
iments with the same lower threshold and upper threshold
but different length of the load vector, and the results are
illustrated in Figure 9.

It is notable that a large value of the load vector length
will not always lead to better performance, even though for
each node it gets more information from the other nodes.
The reason is that a node will choose the most light-loaded
node from its load vector as the destination target. However,
a possible scenario is that multiple nodes choose the same
node as the target but do not know that situation from each
other. As a result, a light-loaded load might be selected as the
target for many times, which makes it overloaded in the next
interval and leads to much SLA violation. In other words, the
performance is not proportional with the increase of the load
vector length due to the decentralized mechanism.

From another point of view, shorter load vector could also
achieve better performance which benefits from incomplete
messages among different node pairs. Besides, the smaller
value of the length could also reduce the network overhead
for sending and receiving load indexes. Thus, we found 8 to
12 is an appropriate value for the load vector length in a data
center comprised of 50 physical nodes.

6. Conclusions and Future Work

In this paper, we have proposed a decentralized resource
management approach for data centers which use virtual
machines to host many third-party applications. The system
models are defined and described in detail. Then, we present
the design of the decentralized VM migration approach,
which considers both load balancing and saving of energy
costs by turning some underutilized nodes into sleeping
state. The VM migration decisions are made according to
the two thresholds predetermined for the system, and several
load indexes of one node will be sent to another several
nodes randomly chosen according to the load vector length.
Performance evaluation results of the simulation experiments
illustrate that our approach can achieve better load balancing
effect and less power consumption than other strategies.
Besides, we also examine and discuss the impact of some key
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factors in our approach on the final performance.The benefit
of the decentralized approach is to eliminate the fatal problem
of single-point failure, which helps improve the availability of
the entire system.

As part of ongoing work, we plan to incorporate the
proposed methods into our realistic cloud environment and
examine its effect and efficiency when putting into real-
world usage. Also, we are considering combining the central-
ized management and decentralized management approach
together to further utilized their advantages in different
aspects.
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