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C
loud computing’s appeal is driven by three 

distinct factors: on-demand pay-as-you-

go resource access that lowers the total 

cost of infrastructure ownership; the elasticity 

of resources to meet varying demand; and the 

colocation of computation and data to enable 

applications such as data analytics. These fac-

tors typically result in a largely centralized 

computing infrastructure confined to a few data 

centers, with applications confined to run in a 

single data center. This centralized cloud model 

is appropriate for largely stateless services with 

limited data transmission, such as the Web, or for 

analyzing batch data that originates inside the 

cloud, as when mining database transactions.

In other settings, however, the cloud’s cen-

tralized nature might be limiting in terms of 

performance and cost. For example, moving 

large amounts of distributed data into the cloud 

could be costly, particularly when such data 

might be amenable to in situ local processing. 

Similarly, interactive cloud applications that are 

latency-sensitive might require close proximity 

to end users, particularly when such users are 

mobile and have limited network connectivity. 

For these cases, we envision moving the cloud 

closer to where the data, users, and even com-

putation might reside. In some sense, clouds are 

an attempt to tame a distributed world in which 

these three entities are already dispersed world-

wide. Consequently, making the cloud distrib-

uted can lead to better performance and enable 

a wider diversity of applications and services.

Distributed clouds are well suited to appli-

cations with large amounts of distributed data 

or interactive users. They’re complementary to 

centralized clouds, which might still be the best 

option for applications requiring tight data and 

compute coupling. In other cases, applications 

could exploit each model’s strengths by combin-

ing distributed and centralized clouds to create 

a hybrid cloud platform.

In general, we can classify distributed clouds 

into three architectural models, ranging from 

tightly coupled to highly dispersed: Multi-data-

center clouds consist of multiple tightly cou-

pled data centers belonging to the same cloud 

provider. Loosely coupled multi-service clouds 

combine services from multiple diverse cloud 

providers. Finally, decentralized edge clouds 

utilize edge resources to provide data and com-

pute resources in a highly dispersed manner.

Here, we briefly examine the first two mod-

els, then discuss the third model in detail. In 

particular, we describe Nebula, a highly decen-

tralized cloud we’re building that uses volunteer 

edge resources.

Multi-Data-Center Clouds
Many cloud infrastructures are built using mul-

tiple data centers located in different geographic 

regions. As an example, Amazon Elastic Com-

pute Cloud (EC2) has multiple Regions, each of 

which consists of data centers in a geographic 

area such as the US East/West, Asia, Europe, and 

so on. Such geographically distributed clouds 

provide two main benefits. First, users in differ-

ent locations can use or be directed to resources 

closest to them, thus providing better latency 

and load distribution. Second, failures in one 

part of the network or one cloud location don’t 

affect the rest of the cloud infrastructure, thus 
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providing better fault tolerance and 

availability. Multiple data centers 

can be linked either through the com-

modity Internet or through dedicated 

network links. Because a single cloud 

provider controls these data centers, 

they’re usually centrally managed 

and provisioned. Communication 

across geographic regions typically 

suffers from wide-area latencies, 

although bandwidth capabilities 

might be sufficient for moving data 

and computation across data center 

boundaries in the latter case. Indi-

vidual Microsoft applications such as 

Windows Live Mesh (now SkyDrive), 

for example, are decomposed across 

multiple data centers.1

Loosely Coupled  
Multi-Service Clouds
Clouds represent a diverse land-

scape containing resource providers, 

application hosting platforms, and 

service providers across the infra-

structure-, platform-, and software-

as-a-service (IaaS, PaaS, and SaaS) 

spectrum. For example, the satellite 

earth imagery cloud (Google Earth) 

provides geographical data, while 

Amazon EC2 provides raw compu-

tational resources. Newly emerging, 

distributed data-intensive applica-

tions would likely require integrating 

and coordinating multiple distinct 

clouds, as with data mining across 

datasets in multiple clouds or scien-

tific workflows that use distinct data 

and computation across widely dis-

tributed sources. The current cloud 

interaction paradigm is client-server 

(as with Web services or http), which 

forces all output data to flow back 

to the client even if it’s intermediate 

in the end-to-end multicloud appli-

cation. The problem is even more 

pronounced if the end-user applica-

tion is resource constrained  — for 

instance, if the network path to 

the end-user application is poor, as 

with a low-bandwidth wireless net-

work. Such loosely coupled clouds 

can be more efficiently integrated 

using proxy networks2 consisting of 

numerous logically connected edge 

nodes that can assume a rich set of 

roles such as routing, caching, and 

intermediate processing.

Decentralized Edge Clouds
Nebula is a highly decentralized and 

dispersed cloud infrastructure that 

uses edge resources for both compu-

tation and data storage.3,4 Unlike the 

previously described cloud architec-

tures, Nebula falls into a different part 

of the distributed cloud landscape. 

It’s designed primarily for applica-

tions with highly dispersed data that 

are both large and widely distributed, 

so that data upload into a traditional 

cloud constitutes a nontrivial portion 

of the execution time. For example, 

consider a blog analysis application 

that processes blogs with multimedia 

content hosted throughout the Inter-

net. Nebula uses edge resources for 

both computation and data storage 

to address the data’s wide dispersion. 

The edge resources could be either 

volunteer or dedicated resources 

across content distribution networks 

(CDNs) or even ISPs, provided these 

were equipped to offer computational 

services. If the infrastructure employs 

volunteer edge resources, Nebula 

will also be cheaper in terms of the 

monetary costs to transport, store, 

and process data — benefitting, for 

instance, a small-scale application 

designer or user.

Nebula presents several chal-

lenges because of its highly decen-

tralized cloud model in addition to 

its use of volunteer edge resources. 

First, such resources are heteroge-

neous, highly dispersed, and loosely 

coupled. Second, the system is sus-

ceptible to failures due to node churn 

and network connectivity problems. 

Third, the system must be easy to 

use and manage both for users who 

execute their applications on the vol-

unteer platform, and for volunteer 

nodes that donate their resources. 

Furthermore, volunteer nodes must 

be completely safe and isolated from 

malicious code that might execute as 

part of a Nebula-based application.

Nebula implements numerous ser-

vices and optimizations to address these 

challenges, including location-aware 

data and computation placement, 

replication, and recovery. Figure 1 

shows the Nebula system architecture. 

In addition to the volunteer nodes that 

donate their  computation and  storage 

Figure 1. Nebula system architecture. A Nebula application’s data and compute 
are managed by its DataStore and ComputerPool masters, respectively. All 
Nebula applications are multiplexed across the shared voluntary resource pool.

Nebula

Central

Nebula

Monitor
Nebula services

Dedicated nodes
DataStore

master
ComputePool

master

Data nodes Compute nodes

Volunteer

nodes



View from the Cloud

72 www.computer.org/internet/ IEEE INTERNET COMPUTING

resources, Nebula consists of a set of 

global and application-specific ser-

vices that are hosted on dedicated, 

stable nodes. These resources and ser-

vices together constitute Nebula’s four 

major components:

•	 Nebula Central is the front end for 

the Nebula ecosystem. It provides 

a simple, easy-to-use, Web-based 

portal that allows volunteers to 

join the system, application writers 

to inject applications, and tools to 

manage and monitor application 

execution.

•	 The DataStore is a scalable data 

storage service that enables effi-

cient and location-aware data 

processing. Each DataStore con-

sists of volunteer data nodes 

that store the actual data, and a 

DataStore master that maintains 

the storage system metadata and 

makes data placement decisions.

•	 The ComputePool provides com-

putation resources through a set 

of volunteer compute nodes. Code 

execution on a compute node 

occurs inside a Google Chrome Web 

browser-based Native Client sand-

box, thus providing a secure way 

to donate computational resources. 

Compute nodes within a Compute-

Pool are scheduled by a Compute-

Pool master that coordinates their 

execution. The compute nodes use 

the DataStore to access and retrieve 

data, and are assigned tasks based 

on application-specific computation 

requirements and data location.

•	 The Nebula Monitor conducts per-

formance monitoring of volunteer 

nodes and network characteristics. 

This monitoring information con-

sists of node computation speeds, 

memory and storage capacities, 

and network bandwidth, as well 

as health information such as 

node and link failures. This infor-

mation is dynamically updated; 

the DataStore and ComputePool 

masters use it for data placement, 

scheduling, and fault tolerance.

These components work together 

to enable the execution of data-

intensive applications on the Nebula 

platform. To this end, Nebula consid-

ers network bandwidth along with 

resources’ computation capabilities 

in the volunteer platform. Conse-

quently, resource management deci-

sions optimize computation time 

as well as data movement costs. In 

particular, compute resources can 

be selected based on their locality 

and proximity to their input data, 

whereas data might be staged closer 

to efficient computational resources. 

In addition, Nebula implements rep-

lication and task re-execution to 

provide fault tolerance and robust-

ness in the presence of failures.

Distributed Data-Intensive 
Cloud Computing
Let’s now examine the opportunity 

and challenge of using distributed 

clouds to conduct data-intensive com-

putation on geographically distrib-

uted data. We illustrate these issues 

using MapReduce5 as an example 

application framework. MapReduce is 

a popular programming model used 

for numerous data-intensive appli-

cations. Here, we consider the prob-

lem of executing MapReduce across 

a distributed cloud environment, in 

scenarios where the input data is also 

geographically distributed.

The MapReduce programming 

model consists of two computational 

stages: map and reduce. Traditionally, 

the input data is prepartitioned and 

colocated on mapper nodes (those that 

execute the map tasks), whereas the 

intermediate data must be shuffled 

across the network between mappers 

and reducers. Bringing MapReduce 

to geographically  distributed set-

tings presents myriad challenges, 

perhaps the most important of which 

is wide-area communication. For 

MapReduce, unless input data and 

compute resources are already colo-

cated, the system must push inputs 

over wide-area links, which can be 

prohibitively costly in terms of both 

performance and money. The shuffle 

between mappers and reducers also 

takes place over wide-area links. 

Consequently, communication time 

can easily come to dominate the 

overall execution.

For a given MapReduce appli-

cation, the MapReduce scheduler 

can minimize communication costs 

by choosing the right placement of 

map and reduce computation. At one 

extreme, all of the distributed inputs 

can be pushed into a single central-

ized location for computation, while 

at the other, computation can be 

colocated with the input data, lead-

ing to purely distributed computa-

tion. The trade-off between these 

approaches regards the relative cost 

of pushing input data versus shuf-

fling the intermediate data, as well 

as the use and load balancing of 

compute resources. It’s interesting to 

explore the benefits and limitations 

of distributed cloud models in terms 

of where they lie between these two 

extremes.

Multi-data center clouds are 

most amenable to more centralized 

approaches because they focus a large 

number of resources across only a few 

sites. In the extreme case, it might 

be possible to carry out the entire 

MapReduce application at a single 

data center, allowing the shuffle 

operation to use fast local-area links 

exclusively. Multi-data-center clouds 

comprise only a few data centers,  

which are often connected using pre-

dictable dedicated links. As a result, 

this architecture lends itself well 

to  optimizing application execution  

based on resource and network char-

acteristics. For example, we’ve devel-

oped a model to optimize MapReduce 

execution times in these settings, 

leading to a 30 to 40 percent reduc-

tion in execution time over Hadoop, 

the popular open source MapReduce 

implementation. A major downside of 

the multi-data-center approach, how-

ever, is that unless the data  centers are 
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placed very close to the data sources, 

input data must be pushed over wide-

area network links before computa-

tion can begin.

On the other hand, decentral-

ized edge clouds are conducive to a 

purely distributed approach because 

they allow computation to be carried 

out very close to the input data. This 

is especially useful for applications 

that fi lter or aggregate input data or 

are map-heavy.

We’ve developed a MapReduce 

execution framework over the Neb-

ula cloud that avoids the need for 

transferring large volumes of data 

over wide-area links by fi nding 

computation resources close to the 

input data. A MapReduce application 

is instantiated in Nebula by pushing 

the input data to the DataStore and 

providing the application code for 

map and reduce along with applica-

tion parameters. The ComputePool 

master can then start assigning map 

and reduce tasks to compute nodes. 

Each map task obtains its input data 

from the DataStore, performs the 

map function on it, and partitions 

the result into as many output fi les 

as there are reduce tasks. The output 

fi les are uploaded to the DataStore at 

the end of each map task. A reduce 

task downloads the map outputs for 

its partition, carries out the reduce 

operation, and uploads the output 

back to the DataStore. Nebula uses a 

locality-aware MapReduce scheduler 

that schedules each task on com-

pute nodes close to the data nodes 

holding the task’s input data. As 

opposed to multi-data-center clouds, 

dynamic and reactive scheduling 

techniques6 are appropriate for such 

a cloud model due to their highly 

decentralized nature, as well as their 

volatility.

Cloud computing services were ini-

tially deployed as centralized com-

puting infrastructures. However, the 

inherently distributed nature of data, 

users, and computation has resulted in 

clouds becoming more and more dis-

tributed. We envision different cloud 

models coexisting and serving dif-

ferent types of applications based on 

their characteristics and requirements. 

These models can also complement 

each other through division of labor 

based on their individual strengths. 

Programming, deployment, and man-

agement of such distributed clouds 

will be a fertile area of research and 

development in the near future. 
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