
View from the Cloud
Editor: George Pallis • gpallis@cs.ucy.ac.cy

70 Published by the IEEE Computer Society 1089-7801/13/$31.00 © 2013 IEEE IEEE INTERNET COMPUTING

C
loud computing’s appeal is driven by three

distinct factors: on-demand pay-as-you-

go resource access that lowers the total

cost of infrastructure ownership; the elasticity

of resources to meet varying demand; and the

colocation of computation and data to enable

applications such as data analytics. These fac-

tors typically result in a largely centralized

computing infrastructure confined to a few data

centers, with applications confined to run in a

single data center. This centralized cloud model

is appropriate for largely stateless services with

limited data transmission, such as the Web, or for

analyzing batch data that originates inside the

cloud, as when mining database transactions.

In other settings, however, the cloud’s cen-

tralized nature might be limiting in terms of

performance and cost. For example, moving

large amounts of distributed data into the cloud

could be costly, particularly when such data

might be amenable to in situ local processing.

Similarly, interactive cloud applications that are

latency-sensitive might require close proximity

to end users, particularly when such users are

mobile and have limited network connectivity.

For these cases, we envision moving the cloud

closer to where the data, users, and even com-

putation might reside. In some sense, clouds are

an attempt to tame a distributed world in which

these three entities are already dispersed world-

wide. Consequently, making the cloud distrib-

uted can lead to better performance and enable

a wider diversity of applications and services.

Distributed clouds are well suited to appli-

cations with large amounts of distributed data

or interactive users. They’re complementary to

centralized clouds, which might still be the best

option for applications requiring tight data and

compute coupling. In other cases, applications

could exploit each model’s strengths by combin-

ing distributed and centralized clouds to create

a hybrid cloud platform.

In general, we can classify distributed clouds

into three architectural models, ranging from

tightly coupled to highly dispersed: Multi-data-

center clouds consist of multiple tightly cou-

pled data centers belonging to the same cloud

provider. Loosely coupled multi-service clouds

combine services from multiple diverse cloud

providers. Finally, decentralized edge clouds

utilize edge resources to provide data and com-

pute resources in a highly dispersed manner.

Here, we briefly examine the first two mod-

els, then discuss the third model in detail. In

particular, we describe Nebula, a highly decen-

tralized cloud we’re building that uses volunteer

edge resources.

Multi-Data-Center Clouds
Many cloud infrastructures are built using mul-

tiple data centers located in different geographic

regions. As an example, Amazon Elastic Com-

pute Cloud (EC2) has multiple Regions, each of

which consists of data centers in a geographic

area such as the US East/West, Asia, Europe, and

so on. Such geographically distributed clouds

provide two main benefits. First, users in differ-

ent locations can use or be directed to resources

closest to them, thus providing better latency

and load distribution. Second, failures in one

part of the network or one cloud location don’t

affect the rest of the cloud infrastructure, thus

Decentralized Edge Clouds

Abhishek Chandra, Jon Weissman,

and Benjamin Heintz • University of Minnesota

Nebula is a highly decentralized cloud that uses volunteer edge resources. Here,

the authors provide insight into some of its key properties and design issues.

They also describe a distributed MapReduce application scenario to illustrate the

 benefits and trade-offs of using distributed and decentralized clouds for distributed

data-intensive computing applications.

Decentralized Edge Clouds

SEPTEMBER/OCTOBER 2013 71

providing better fault tolerance and

availability. Multiple data centers

can be linked either through the com-

modity Internet or through dedicated

network links. Because a single cloud

provider controls these data centers,

they’re usually centrally managed

and provisioned. Communication

across geographic regions typically

suffers from wide-area latencies,

although bandwidth capabilities

might be sufficient for moving data

and computation across data center

boundaries in the latter case. Indi-

vidual Microsoft applications such as

Windows Live Mesh (now SkyDrive),

for example, are decomposed across

multiple data centers.1

Loosely Coupled
Multi-Service Clouds
Clouds represent a diverse land-

scape containing resource providers,

application hosting platforms, and

service providers across the infra-

structure-, platform-, and software-

as-a-service (IaaS, PaaS, and SaaS)

spectrum. For example, the satellite

earth imagery cloud (Google Earth)

provides geographical data, while

Amazon EC2 provides raw compu-

tational resources. Newly emerging,

distributed data-intensive applica-

tions would likely require integrating

and coordinating multiple distinct

clouds, as with data mining across

datasets in multiple clouds or scien-

tific workflows that use distinct data

and computation across widely dis-

tributed sources. The current cloud

interaction paradigm is client-server

(as with Web services or http), which

forces all output data to flow back

to the client even if it’s intermediate

in the end-to-end multicloud appli-

cation. The problem is even more

pronounced if the end-user applica-

tion is resource constrained — for

instance, if the network path to

the end-user application is poor, as

with a low-bandwidth wireless net-

work. Such loosely coupled clouds

can be more efficiently integrated

using proxy networks2 consisting of

numerous logically connected edge

nodes that can assume a rich set of

roles such as routing, caching, and

intermediate processing.

Decentralized Edge Clouds
Nebula is a highly decentralized and

dispersed cloud infrastructure that

uses edge resources for both compu-

tation and data storage.3,4 Unlike the

previously described cloud architec-

tures, Nebula falls into a different part

of the distributed cloud landscape.

It’s designed primarily for applica-

tions with highly dispersed data that

are both large and widely distributed,

so that data upload into a traditional

cloud constitutes a nontrivial portion

of the execution time. For example,

consider a blog analysis application

that processes blogs with multimedia

content hosted throughout the Inter-

net. Nebula uses edge resources for

both computation and data storage

to address the data’s wide dispersion.

The edge resources could be either

volunteer or dedicated resources

across content distribution networks

(CDNs) or even ISPs, provided these

were equipped to offer computational

services. If the infrastructure employs

volunteer edge resources, Nebula

will also be cheaper in terms of the

monetary costs to transport, store,

and process data — benefitting, for

instance, a small-scale application

designer or user.

Nebula presents several chal-

lenges because of its highly decen-

tralized cloud model in addition to

its use of volunteer edge resources.

First, such resources are heteroge-

neous, highly dispersed, and loosely

coupled. Second, the system is sus-

ceptible to failures due to node churn

and network connectivity problems.

Third, the system must be easy to

use and manage both for users who

execute their applications on the vol-

unteer platform, and for volunteer

nodes that donate their resources.

Furthermore, volunteer nodes must

be completely safe and isolated from

malicious code that might execute as

part of a Nebula-based application.

Nebula implements numerous ser-

vices and optimizations to address these

challenges, including location-aware

data and computation placement,

replication, and recovery. Figure 1

shows the Nebula system architecture.

In addition to the volunteer nodes that

donate their computation and storage

Figure 1. Nebula system architecture. A Nebula application’s data and compute
are managed by its DataStore and ComputerPool masters, respectively. All
Nebula applications are multiplexed across the shared voluntary resource pool.

Nebula

Central

Nebula

Monitor
Nebula services

Dedicated nodes
DataStore

master
ComputePool

master

Data nodes Compute nodes

Volunteer

nodes

View from the Cloud

72 www.computer.org/internet/ IEEE INTERNET COMPUTING

resources, Nebula consists of a set of

global and application-specific ser-

vices that are hosted on dedicated,

stable nodes. These resources and ser-

vices together constitute Nebula’s four

major components:

•	 Nebula Central is the front end for

the Nebula ecosystem. It provides

a simple, easy-to-use, Web-based

portal that allows volunteers to

join the system, application writers

to inject applications, and tools to

manage and monitor application

execution.

•	 The DataStore is a scalable data

storage service that enables effi-

cient and location-aware data

processing. Each DataStore con-

sists of volunteer data nodes

that store the actual data, and a

DataStore master that maintains

the storage system metadata and

makes data placement decisions.

•	 The ComputePool provides com-

putation resources through a set

of volunteer compute nodes. Code

execution on a compute node

occurs inside a Google Chrome Web

browser-based Native Client sand-

box, thus providing a secure way

to donate computational resources.

Compute nodes within a Compute-

Pool are scheduled by a Compute-

Pool master that coordinates their

execution. The compute nodes use

the DataStore to access and retrieve

data, and are assigned tasks based

on application-specific computation

requirements and data location.

•	 The Nebula Monitor conducts per-

formance monitoring of volunteer

nodes and network characteristics.

This monitoring information con-

sists of node computation speeds,

memory and storage capacities,

and network bandwidth, as well

as health information such as

node and link failures. This infor-

mation is dynamically updated;

the DataStore and ComputePool

masters use it for data placement,

scheduling, and fault tolerance.

These components work together

to enable the execution of data-

intensive applications on the Nebula

platform. To this end, Nebula consid-

ers network bandwidth along with

resources’ computation capabilities

in the volunteer platform. Conse-

quently, resource management deci-

sions optimize computation time

as well as data movement costs. In

particular, compute resources can

be selected based on their locality

and proximity to their input data,

whereas data might be staged closer

to efficient computational resources.

In addition, Nebula implements rep-

lication and task re-execution to

provide fault tolerance and robust-

ness in the presence of failures.

Distributed Data-Intensive
Cloud Computing
Let’s now examine the opportunity

and challenge of using distributed

clouds to conduct data-intensive com-

putation on geographically distrib-

uted data. We illustrate these issues

using MapReduce5 as an example

application framework. MapReduce is

a popular programming model used

for numerous data-intensive appli-

cations. Here, we consider the prob-

lem of executing MapReduce across

a distributed cloud environment, in

scenarios where the input data is also

geographically distributed.

The MapReduce programming

model consists of two computational

stages: map and reduce. Traditionally,

the input data is prepartitioned and

colocated on mapper nodes (those that

execute the map tasks), whereas the

intermediate data must be shuffled

across the network between mappers

and reducers. Bringing MapReduce

to geographically distributed set-

tings presents myriad challenges,

perhaps the most important of which

is wide-area communication. For

MapReduce, unless input data and

compute resources are already colo-

cated, the system must push inputs

over wide-area links, which can be

prohibitively costly in terms of both

performance and money. The shuffle

between mappers and reducers also

takes place over wide-area links.

Consequently, communication time

can easily come to dominate the

overall execution.

For a given MapReduce appli-

cation, the MapReduce scheduler

can minimize communication costs

by choosing the right placement of

map and reduce computation. At one

extreme, all of the distributed inputs

can be pushed into a single central-

ized location for computation, while

at the other, computation can be

colocated with the input data, lead-

ing to purely distributed computa-

tion. The trade-off between these

approaches regards the relative cost

of pushing input data versus shuf-

fling the intermediate data, as well

as the use and load balancing of

compute resources. It’s interesting to

explore the benefits and limitations

of distributed cloud models in terms

of where they lie between these two

extremes.

Multi-data center clouds are

most amenable to more centralized

approaches because they focus a large

number of resources across only a few

sites. In the extreme case, it might

be possible to carry out the entire

MapReduce application at a single

data center, allowing the shuffle

operation to use fast local-area links

exclusively. Multi-data-center clouds

comprise only a few data centers,

which are often connected using pre-

dictable dedicated links. As a result,

this architecture lends itself well

to optimizing application execution

based on resource and network char-

acteristics. For example, we’ve devel-

oped a model to optimize MapReduce

execution times in these settings,

leading to a 30 to 40 percent reduc-

tion in execution time over Hadoop,

the popular open source MapReduce

implementation. A major downside of

the multi-data-center approach, how-

ever, is that unless the data centers are

Decentralized Edge Clouds

SEPTEMBER/OCTOBER 2013 73

placed very close to the data sources,

input data must be pushed over wide-

area network links before computa-

tion can begin.

On the other hand, decentral-

ized edge clouds are conducive to a

purely distributed approach because

they allow computation to be carried

out very close to the input data. This

is especially useful for applications

that fi lter or aggregate input data or

are map-heavy.

We’ve developed a MapReduce

execution framework over the Neb-

ula cloud that avoids the need for

transferring large volumes of data

over wide-area links by fi nding

computation resources close to the

input data. A MapReduce application

is instantiated in Nebula by pushing

the input data to the DataStore and

providing the application code for

map and reduce along with applica-

tion parameters. The ComputePool

master can then start assigning map

and reduce tasks to compute nodes.

Each map task obtains its input data

from the DataStore, performs the

map function on it, and partitions

the result into as many output fi les

as there are reduce tasks. The output

fi les are uploaded to the DataStore at

the end of each map task. A reduce

task downloads the map outputs for

its partition, carries out the reduce

operation, and uploads the output

back to the DataStore. Nebula uses a

locality-aware MapReduce scheduler

that schedules each task on com-

pute nodes close to the data nodes

holding the task’s input data. As

opposed to multi-data-center clouds,

dynamic and reactive scheduling

techniques6 are appropriate for such

a cloud model due to their highly

decentralized nature, as well as their

volatility.

Cloud computing services were ini-

tially deployed as centralized com-

puting infrastructures. However, the

inherently distributed nature of data,

users, and computation has resulted in

clouds becoming more and more dis-

tributed. We envision different cloud

models coexisting and serving dif-

ferent types of applications based on

their characteristics and requirements.

These models can also complement

each other through division of labor

based on their individual strengths.

Programming, deployment, and man-

agement of such distributed clouds

will be a fertile area of research and

development in the near future.

References

1. S. Agarwal et al., “Volley: Automated Data

Placement for Geo-Distributed Cloud Ser-

vices,” Proc. 7th Usenix Conf. Networked

Systems Design and Implementation, Use-

nix Assoc., 2010, pp. 2–2; http://dl.acm.

org/citation.cfm?id=1855711.1855713.

2. S. Ramakrishnan et al., “Accelerating Dis-

tributed Workfl ows with Edge Resources,”

Proc. 2nd Int’l Workshop on Workfl ow Mod-

els, Systems, Services and Applications in

the Cloud (CloudFlow 13), to appear, 2013.

3. M. Ryden et al., Nebula: Data Inten-

sive Computing over Widely Distributed

Voluntary Resources,” tech. report TR

13-007, Dept. of Computer Science and

Eng., Univ. of Minnesota, Mar. 2013.

4. A. Chandra and J. Weissman, “Nebulas:

Using Distributed Voluntary Resources to

Build Clouds,” Proc. Workshop Hot Topics

in Cloud Computing (HotCloud 09), Use-

nix Assoc., 2009; www.usenix.org/event/

hotcloud09/tech/full_papers/chandra.pdf.

5. J. Dean and S. Ghemawat, “MapReduce: Sim-

plifi ed Data Processing on Large Clusters,”

Proc. 6th Usenix Symp. Operating Systems

Design & Implementation (OSDI 04), Usenix

Assoc., 2004, pp. 137–149.

6. B. Heintz et al., “Cross-Phase Optimi-

zation in MapReduce,” Proc. IEEE Int’l

Conf. Cloud Eng. (IC2E 13), IEEE, 2013,

pp. 338–347.

Abhishek Chandra is an associate professor in

the Department of Computer Science and

Engineering at the University of Minne-

sota. His research interests are in operating

systems and distributed systems. Chandra

has a PhD in computer science from the

University of Massachusetts Amherst. Con-

tact him at chandra@cs.umn.edu.

Jon Weissman is a professor of computer sci-

ence at the University of Minnesota.

His current research interests are in

distributed systems, high-performance

computing, and resource management.

Weissman has a PhD in computer science

from the University of Virginia. Contact

him at jon@cs.umn.edu

Benjamin Heintz is a PhD candidate in the

Department of Computer Science & Engi-

neering at the University of Minnesota.

His research interests include distributed

systems and data-intensive computing.

Heintz has an MS in computer science

from the University of Minnesota. Con-

tact him at heintz@cs.umn.edu.

Selected CS articles and columns

are also available for free at http://

ComputingNow.computer.org.

