
P2PCS – A Pure Peer-to-Peer Computing System for Large Scale Computation
Problems

Jigyasu Dubey

Department of Information Technology
Shri Vaishnav Institute of Technology & Science

Indore, India
jigyasudube@yahoo.co.in

Vrinda Tokekar
Institute of Engineering & Technology

Devi Ahilya Vishwavidyalaya
Indore, India

vrindatokekar@yahoo.com

Abstract— Complex and large scale scientific computation
problems require high computing machines to process data or
jobs which are expensive in terms of money. One most successful
and low cost mechanism for acquiring the necessary
computation power for such type of application is the Peer-to-
Peer computing paradigm, which makes use of the
computational power of personal computers. The peer-to-peer
(P2P) systems represent the applications that allow direct
communication between peers and resource harvesting. In this
paper we propose a generic Peer-to-Peer computing system
(P2PCS) to process complex and large scale scientific
computation problems. The system utilizes the CPU cycles of
desktop PCs which are connected to the network to perform the
computations. We are implementing this system in JAVA
technology by using Sun’s JXTA –JXSE 2.5 libraries.

Keywords- P2P; JXTA; P2P Computing; Peer

I. INTRODUCTION
In the era of 1970s & 1980s, scientific calculations &

complex mathematical calculations were only run on
dedicated and expensive multiprocessors like CRAY
computers. The parallel machines are very expensive to build
and maintain. On the other hand, there is also a huge
potential computing power located in the millions of
computers connected to the Internet. From the last few years,
the scientific computing community has been aimed towards
lower computational costs [1]. The global computing
systems such as Javelin++ [2] and Bayanihanare [3] are
basically centralized systems. The centralized architecture
leads to some problems in scalability and accessibility [4].
The latest evolution was the use of desktop/home PCs
combined with a new computing paradigm: peer-to-peer
(P2P). The P2P architectures and systems are characterized
by direct access between peer computers, rather than through
a centralized server. The P2P model is rising as a new
distributed model because of its capability to harvest the
computing and storage power of hosts connected to the
Internet to make their underutilized resources available to
others. The P2P paradigm reduces the requirement of costly
infrastructure by allowing direct communication between
peers and resource harvesting [5]. It also increases the
scalability and reliability by eliminating the need of a
centralized point (server). Initially the applications
developed were basically dedicated to file sharing, but now
P2P is seen as a possible computing model for distributed
and parallel computing.

Experience has shown that not only idle CPU cycles are
widely available throughout the Internet; but in addition,
many users are willing to share cycles [6]. These resources
can be used in a Peer-to-Peer (P2P) fashion which was
shown on the example of SETI@home [7] project.
Applications such as distributed.net and SETI use the idle
CPU cycles of thousands of computers connected to the
Internet in order to break encryption codes and find signs of
intelligent life in outer space. The underlying foundation for
this type of application is parallel processing – breaking a
large problem into smaller pieces, distributing those pieces to
an array of processors, and then combining the small
solutions to solve the larger problems. Popular applications
for harvesting idle cycles from ordinary users, such as
SETI@home [8], require donors of cycles which are
manually coordinated through a centralized web site.

In this paper, we investigate the possibility of using a
pure peer-to-peer network to construct a computing system.
We proposed a generic distributed computational system
P2PCS capable of utilizing the idle CPU cycles of any
Internet computer that the peer is installed on. P2PCS runs as
a standalone Java application on any Java enabled computing
platform. The system is implemented in Java using JXTA [9]
libraries. The P2PCS supports only those computations
which can be divided into small tasks and which are
embarrassingly parallel in nature. Only those PCs on which
P2PCS code is installed can participate. The P2PCS system
consists of two components- Task Provider and Task
Processor. The task provider peer provides the task and data
for processing to the task processors. The task processor
peers collect the task and data from task provider and process
it and after processing send the results back to the task
provider.

II. RELATED WORK
In last few years, a number of P2P networking systems

have been developed for various applications like file sharing
and distributed computing. Napster, Gnutella, FreeNet are
the example of file sharing systems while SETI@home is the
example of the P2P computing system which is used to
process the astronomical data only. SETI@home is the most
successful application with the large number of contributors
because of their exciting application theme “search for an
extraterrestrial intelligence”. Initial SETI project used the
special super computers for the analysis of bulk data
received from telescope. In 1995, David Gedye proposed the
concept of a virtual super computer formed by large number

2011 International Conference on Computational Intelligence and Communication Systems

978-0-7695-4587-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CICN.2011.126

589

2011 International Conference on Computational Intelligence and Communication Systems

978-0-7695-4587-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CICN.2011.126

583

2011 International Conference on Computational Intelligence and Communication Systems

978-0-7695-4587-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CICN.2011.126

582

Authorized licensed use limited to: University of Sydney. Downloaded on April 28,2024 at 13:36:38 UTC from IEEE Xplore. Restrictions apply.

of Internet connected computers for the analysis of the large
amount of data received from telescope. The idea of David
Gedye is implemented as SETI@home project which was
launched in May 1999 and running successfully. In this
project bulk of data received from telescopes are distributed
to many PCs for processing by a centralized server and after
completion the results are sent back to the centralized server
[8][10].The online file sharing system called Napster is
another example of P2P network. It is an on line music file
sharing system developed by Shawn Fanning. This system
allows its users to upload and download MP3 files without
any restriction. Napster maintains a directory of shared file at
central location and to download a file peer issue queries to
the directory server to find which peer hold the desired file.
Napster’s search mechanism is centralized but its file sharing
mechanism is decentralized. The downloading of files is
done directly between the peers. The Napster was launched
in June 1999 and shutdown by the court order in July 2001
due to violation of copyright rules [11] [12].

Jerome Verbeke, Neelakanth Nadgir et al. in [13]
presented a decentralized P2P computing framework for
large-scale computation problems named as JNGI. In this
framework the computational resources are divided into
groups according to their functionality. They proposed three
peer groups: the monitor group, the worker group, and the
task dispatcher group. The design of framework limits
communication to small peer groups that enables the
framework to scale to a very large number of peers. Jean-
Baptiste et al. in [14] added new types of groups called
similarity groups into the JNGI project. These new groups
were formed on the basis of two criteria, qualitative
(structural) or quantitative (performance). The qualitative
criteria included OS type or JVM version where as
quantitative criteria included physical characteristics such as
CPU speed, bandwidth, and RAM size. However peer
grouping based on geographic location criteria needs to be
considered to improve the reliability. It is observed that most
of the research work in the area of P2P computing is based
on hybrid architecture, very few of them are considering the
pure P2P architecture. Most of the load balancing algorithms
and security mechanisms so far developed consider a
centralized system for indexing purpose. However do not
consider the decentralized nature of pure P2P network
systems.

It is observes that the focus of research work in the area
of P2P computing is to develop communication protocols
and frameworks to accomplish data sharing and data
exchange. Most of the protocols and frameworks have been
developed to support the data sharing in the P2P file sharing
systems. There are very few mechanisms available that use
the computing power of the remote systems for computing
purposes.

III. PEER-TO-PEER COMPUTING SYSTEM
The Peer-to-Peer computing system (P2PCS) utilizes the

processing power of idle Desktop PCs presented at the edge
of the Internet as shown in fig. 1. These Desktop PCs are
known as peers. The architecture of P2PCS is shown in Fig.
2. The P2PCS system consists of two components- Task

Provider and Task Processor. A peer in P2PCS at a time can
be a task provider or a task processor, but not both. A user on
a peer provides the job in form of computation code with the
data which is to be processed. This peer becomes as a task
provider in the system and other peers as task processors.
The task which is provided by the user for processing must
be able to split in subtasks.

The task provider peer is responsible for splitting the task

in to number of small tasks and distributes these subtasks to
the task processor peers in the system for processing. The
task provider is also responsible for integrating the results
which it receives from the different task processors after the
completion of task. The task processor peers receive the
computation code and data from the task provider and return
the results back to the task provider after processing the task.
The proposed system will work on following algorithm:

Figure 1. P2PCS Model

Figure 2. P2PCS Architecture

590584583

Authorized licensed use limited to: University of Sydney. Downloaded on April 28,2024 at 13:36:38 UTC from IEEE Xplore. Restrictions apply.

A. Task Provider
As the task provider program start on a peer it launches

the peer into JXTA network. After that it builds and
publishes an input pipe through pipe advertisement on JXTA
network. From this input pipe the task provider receives the
task requests from the task processors, and results. The pipe
advertisement contains a message that task is available for
processing. In response of this input pipe advertisement the
task provider expects to receive a JXTA message with the
type element defined. If the type element has a value of
“results”, the message will also contain an element called
results. If the type element has value other than result, the
task provider will assume that the remote peer is looking for
new task. In this case, the message from the task processor
peer should contain an element called pipe that contain an

input pipe advertisement of the task processor. The task
provider sends the task and data to the task processor through
this pipe. The sub task which is to be processed is in form of
serialized object. Upon reception of any result, the Task
Provider integrates it with the previous results sent by other
task processor (if any) thus when the last task processor
sends the result, Task Provider forms the complete result.

B. Task Processor
In the P2PCS the task processor has two important

functionalities 1) to receive and process the sub task and 2)
to return results back to the task provider peer. Initially the
task processor peer discovers the pipe advertisement
published by task provider, requests the task through an
output pipe and then connects with. The task processor will
send a message with a type element having a value of task.
The message also includes a pipe advertisement which task
processor has created to receive the task and data from the
task provider. When the task processor program is run on a
peer it launches the peer into JXTA network and it will
attempt to find and connect to the pipe advertised by the task
provider peer. After receiving the pipe advertisement from
task provider the task processor peer sends a message to the
task provider with a type element other then result and a pipe
advertisement of its input pipe. The task processor peer uses
this pipe to receive the task and data from the task provider
peer. The task is received by the listener of the task
processor’s input pipe. The object received in the message
element will call the processing code to process the data
which is attached in message. When processing is done the
task processor peer sends a message back to the task provider
with the type element result and other element hold the
actual results.

IV. P2PCS IMPLEMENTATION
The implementation of proposed system is done in JAVA

by using JXTA-JXSE 2.5 libraries. The JXTA libraries
provide fundamental infrastructure to implement a virtual
network of peers over an existing physical network. In the
proposed system, for the communication between peers we
use JXTA’s unicast pipe. At each peer our program creates
two pipes, an input pipe and an output pipe. The input pipe is
used to receive the messages from other peers while output
pipe is used to send messages to other peers. We used a
homogeneous collection of 6 machines to carry out the
experiments. Each machine has equipped with Intel® Core™
2 CPU 4300@1.80 GHz 900 MHz processor, 2 GB RAM
and Windows Vista™ Ultimate 32 bit operating system. All
these machines are connected via 100 Mbps switch using
CAT-5 Ethernet cable.

We develop an application in JAVA to find out
Summation of all natural numbers from 0 to given fixed
number. This application is embarrassingly parallel in nature.
In our setup one machine is act as task provider and other
five machines used as task processors. In the first experiment
we calculate the sum of natural number between 0 and
200000. This range is specified by the user on command line
at task provider machine. On one machine task provider
program is installed and it divides above task into small tasks

591585584

Authorized licensed use limited to: University of Sydney. Downloaded on April 28,2024 at 13:36:38 UTC from IEEE Xplore. Restrictions apply.

(divide the range 0-200000 in equal sub ranges 0-1000,
1001-2000, 2001-3000, ….. up to 200000) and provides
these small tasks to the task processor program running on
other five machines for processing. The time is measured
from the moment when range of numbers given to task
provider to the moment all the results received from the task
processors. The same task, summation of natural numbers
between 0 and 200000, is executed on a single machine with
same specification and time is measured. On single machine
mention task is completed in 72 seconds while when same
task is executed on five machines it takes 39 seconds to
complete.

V. CONCLUSION
The proposed Peer-to-Peer computing system achieves

high processing capability very economically as compare to
other approaches like super computers, grid computing, and
cluster computing. It may be very useful for the scientific
community in important scientific projects and applications
such as astronomical measurements, multimedia streaming,
bio-medical studies, academic research, weather forecast and
data mining applications where very large volumes of jobs or
data are available for processing. These applications require
high computing machines to process data or jobs which are
expensive in terms of money. The P2PCS system act like a
virtual super computer with varying processing power by
utilizing the ideal CPU cycles of the desktop PCs connected
to the internet. It is a generic distributed computing system.
Anyone can use this system for processing the task and data
by changing the task processing code.

 The existing global computing systems are
centralized which leads to some problems in scalability and
accessibility. The proposed system has decentralized
architecture. It uses the JXTA protocol for communication
and collaboration between the peers. In this system the peer
can be a task processor or task provider. When a peer has the
large task to process it will become as task provider and
when peer’s CPU goes ideal it will become a task processor.

REFERENCES
[1] Pawel Jurczyk, Maciej Golenia, Maciej Malawski, Dawid Kurzyniec,

Marian Bubak ; and Vaidy S. Sunderam, “P2P Computing System
with Remote Method Invocation over JXTA”, 6th International
Parallel Processing and Applied Mathematics 2005, pp. 667-674

[2] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, P. Capello,
"Javelin++: Scalability Issues in Global Computing," Proceedings of
the ACM Java Grande 1999 Conference, June 12-14, 1999, San
Francisco, California.

[3] Luis F. G. Sarmenta, "Volunteer Computing", Ph.D. Thesis, MIT
Department of Electrical Engineering and Computer Science, March
2001.

[4] N.A.Al-Dmour and W.J.Teahan, “ParCop:A Decentralized Peer-to-
Peer Computing System”, In proceedings of the Third International
Workshop on Parallel and Distributed Computing, 2004, pp. 162 –
168,

[5] Jigyasu Dubey, Dr. (Mrs.) Vrinda Tokekar, Anand Rajavat, “A Study
of P2P Computing Networks”, in proceedings of ICCET’ 10, pp 623-
627, 13-14 Nov. 2010, Jodhpur, India.

[6] Virginia Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, and Shanyu
Zhao, “Cluster Computing on the Fly: P2P Scheduling of Idle Cycles
in the Internet”, In Proc. 3rd International Workshop on Peer-to-Peer
System (IPTPS 2004). San Diego,Feb. 2004.

[7] SETI@home: Search for extraterrestrial intelligence at home (2003)
http://setiathome.ssl.berkeley.edu/.

[8] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETI@home: An Experiment in public-resource computing.
Communicationsof the ACM, 45:56–61, 2002.

[9] JXTA Java ™ Standard Edition v2.5: Programmers Guide September
10 th , 2007

[10] Korpela, E., Werthimer, D., Anderson, D., Cobb, J., and Lebofsky,
“SETI@home: Massively Distributed Computing for SETI,” In
Journal on Computing in Science and Engineering, Volume 3, Issue
1, pp. 78 – 83, 2001.

[11] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-to-
Peer File Sharing Technologies,” White Paper, Electronic Trading
Research Unit (ELTRUN), Athens University of Economics and
Business, 2002.

[12] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble, “A
Measurement Study of Peer-to-Peer File Sharing Systems,” In
Proceedings of ACM/SPIE Multimedia Computing and Networking
(MMCN ’02), 2002.

[13] Jerome Verbeke, Neelakanth Nadgir, Greg Ruetsch, Ilya Sharapov,
“Framework for Peer-to-Peer Distributed Computing in a
Heterogeneous, Decentralized Environment,” In Proceedings of the
3rd International Workshop on Grid Computing, pp.1–12, Year 2002.

[14] Jean-Baptiste Ernst-Desmulier, Julien Bourgeois and Francois Spies,
Jerome Verbeke, “Adding New Features In A Peer-to-Peer
Distributed Computing Framework,” In Proceedings of the 13th
Euromicro Conference on Parallel, Distributed and Network-Based
Processing (Euromicro-PDP’05), pp.34 – 41, 2005.

592586585

Authorized licensed use limited to: University of Sydney. Downloaded on April 28,2024 at 13:36:38 UTC from IEEE Xplore. Restrictions apply.

