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Abstract

Resource discovery is a key issue for Grid systems in which applications are composed of hardware and software
resources that need to be located. Classical approaches to Grid resource discovery are either centralized or hierarchical
and will prove inefficient as the scale of Grid systems rapidly increases. On the other hand, the Peer-to-Peer (P2P)
paradigm emerged as a successful model that achieves scalability in distributed systems. One possibility would be
to borrow existing methods from the P2P paradigm and to adopt them to Grid systems taking into consideration the
existing differences. Several such attempts have been made during the last couple of years. This report aims to serve
as a review of the most promising Grid systems that use P2P techniques to facilitate resource discovery in order
to perform a qualitative comparison of the existing approaches and to draw conclusions about their advantages and
weaknesses. Future research directions in the field are also discussed.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).
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1 Introduction

The ultimate target of any resource sharing environment is to pool together large sets of resources and to make them
available to its users and the deployed applications. A fundamental service in these environments is resource discovery
which allows to locate resources across multiple administrative domains based on a list of predefined attributes. After
specifying the attributes of existing resources, the system returns a list of locations where the required resources
currently reside.

Grid and P2P are the two most common type of resource sharing systems currently in wide use. These two systems
evolved from different communities and serve different needs. Grid systems interconnect computers clusters, storage
systems, instruments, and in general available infrastructure of large scientific computing centers in order to make
possible the sharing of existing resources, such as CPU time, storage, equipment, data, software applications. Most
Grid systems are of moderate-size, they are centrally or hierarchically administered and there are strict rules governing
the availability of the participating resources (i.e., a large percentage of the CPU time of a participating cluster should
be dedicated for Grid use 24 hours a day). Grids are used for complex scientific applications which are time critical
and they comply to strict QoS rules. Grid resources are highly dynamic and their values vary significantly over time
(i.e., available CPU time, memory, available storage, network bandwidth). The resources required by applications are
described by specifying a set of attributes (multi-attribute queries) like available computing power and memory. On
the other hand, the most popular service provided by P2P systems is file sharing (e.g., Gnutella, KaZaA). Other appli-
cations are real time data transfer (e.g., telephony such as Skype), cycle stealing (e.g., SETI@Home), or collaboration
(e.g., Groove). The typical participant in such systems enters from a common desktop asking to download music or
video files over Internet TCP connections. Participation is highly dynamic as users can enter, depart, and rejoin the
system totally unpredictably. Finally, most resource discovery queries are not attribute-dependent as in Grids but they
either specify a file name, they are keyword searches or range queries.

Grid and P2P are both resource sharing systems having as their ultimate goal the harnessing of resources across
multiple administrative domains. They have many common characteristics such as dynamic behavior and hetero-
geneity of the involved components. Apart from their similarities, Grid and P2P systems exhibit essential differences
reflected mostly by the behavior of the involved users, the dynamic nature of Grid resources (i.e., CPU load, available
memory, network bandwidth, software versions) as opposed to pure file sharing which is by far the most common
service in P2P systems. Another essential difference results from the demanding nature of sensitive Grid applications
that are time and data critical and have strict fault tolerance and security requirements as opposed to P2P applications
which use commodity hardware and exhibit best effort behavior. The basic differences between Grid and P2P systems
are summarized in Table 1.

Table 1: The basic differences between Grid and P2P systems.
In terms of ... Grids P2P
Users Scientific community Any desktop user
Computing Workstations, multiprocessors, Common desktops

clusters of computers
Network High speed dedicated network Internet TCP connections
Administration Centralized or hierarchical Distributed
Applications Complex scientific applications such asFile sharing, real-time data

large scale simulations, data analysis streaming, cycle steeling
Scale Connect a relatively small number of Connection is possible from any

specialized sites (moderate size) desktop (large size)
Security Secure services for job submission andProtocols for file sharing

interactive execution
Participation Static or slowly changing participation Nodes can enter or leave totally

of nodes over time unpredictably
Trust Trusted users Untrusted, anonymous users

Although Grid and P2P systems emerged from different communities in order to serve different needs and to
provide different functionalities, they both constitute successful resource sharing paradigms. It has been argued in the
literature that Grid and P2P systems will eventually converge [26, 68, 37]. The techniques used in each of these two
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different types of systems will result to a mutual benefit. As the scale of Grid systems rapidly increases, centralized
management will prove inefficient and other methods will be considered. The QoS constraints that currently govern
most Grid applications will loosen up as Grids will move towards more popular and diverse application scenarios.
Strict resource participation rules will be relaxed as participating organizations may need to have their infrastructure
for own use at certain periods and for Grid jobs at other times and the use of commodity hardware will be allowed.
On the other hand, P2P systems will open up to more sophisticated applications and they will have to support more
complex queries and different QoS levels. P2P is not just for file sharing, but opens a new era of group based resource-
aware communications for many new applications and services for connected lifestyles [38]. Adding together location
information, presence information, and many other parameters available in the end-to-end communication path and
local resources, new P2P service scenarios can be envisioned. The market is driving P2P services based on IP into
wireless mobile devices. Some current examples of such services are VoIP, Instant Messaging, file sharing, navigation
systems and multi-party video conferencing. Associated P2P/Grid application such as mobile Grid for access to own
VO’s Grid resources or distribute/store VO’s shared information (web, digital cameras, own digital community-TV
broadcast, music, etc) will also emerge. Tomorrow’s resource sharing systems will be of large scale, highly dynamic
(in terms of resource availability and infrastructure participation), and will exhibit high heterogeneity. Resources can
become unavailable at any time and machines can enter or leave the resource sharing system unpredictably while QoS
will still be an issue for specific applications.

The purpose of the present report is to serve as a review of the most promising Grid systems that incorporate
P2P resource discovery methods, in order to perform a qualitative comparison of the existing approaches and to
draw conclusions about their advantages and their weaknesses. The systems discussed in this report make use of
different P2P approaches, ranging from unstructured [36, 69, 51, 50, 57] to structured ones [13, 10, 53, 65, 11, 63, 58].
Along with the presentation of the systems, their capabilities in terms of scalability, reliability, efficiency, ease of
implementation, ease of use, self-organization, fault-tolerance, security, robustness are also discussed. Furthermore,
we elaborate on P2P-based approaches for building scalable Grid resource discovery services based on semantic
information in order to improve the precision of resource discovery [39, 45, 35, 62, 74]. Finally, future research
directions in the field are discussed.

The remainder of this report is organized as follows. Section 2 describes resource discovery services as imple-
mented in current Grid systems. Section 3 discusses the P2P paradigm, describing the different models (including
unstructured, structured, and hybrid) and comparing them on the basis of their performances and capabilities. Section
4 presents a review of systems that adopt a P2P approach to Grid resource discovery. Section 5 discusses the role of
semantics in the design of P2P-based Grid resource discovery systems. Finally, Section 6 concludes the report.

2 Resource discovery in Grid systems

Current approaches for resource discovery on Grids are based on centralized or hierarchical client/server models. This
section describes the information services that provide resource discovery capabilities in the main Grid environments
currently available, including Globus Toolkit [29], Condor [46], UNICORE [24], and the LCG/EGEE framework [6].

2.1 Globus Toolkit

Globus Toolkit is an open-source set of services and software libraries that supports the development of Grid sys-
tems and applications [29]. It includes software for security, information infrastructure, resource management, data
management, communication, fault detection, and portability. In particular, resource discovery is addressed by the
Monitoring and Discovery Service(MDS) which provides a framework for publishing and accessing information
about Grid resources.

In Globus Toolkit 2, theMonitoring and Discovery Serviceversion 2 (MDS-2) provides information about the
status of the system components using theLightweight Directory Access Protocol(LDAP) as a uniform interface for
such information. MDS-2 includes a configurable information provider calledGrid Resource Information Service
(GRIS) and a configurable aggregate directory service calledGrid Index Information Service(GIIS). A GRIS can
answer queries about the resources of a particular Grid node. Examples of information provided by this service
include host identity (e.g., operating systems and versions), as well as more dynamic information such as CPU and
memory availability. A GIIS combines the information provided by a set of GRIS services managed by a givenVirtual
Organization(VO), giving a coherent system image that can be explored or searched by Grid applications. A GIIS can
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also be used to combine the information provided by a set of GIISes. Therefore, it is possible to create a hierarchical
structure in which a top level GIIS can answer queries about all the resources in the underlying VOs.

GIIS

GRIS 1 GRIS 2 GRIS 3

Information

Provider 1

Information

Provider 2

Information

Provider 3

Information

Provider 4

Information

Provider 5

Information

Provider 6

Figure 1: The architecture of Globus MDS-2.

In Globus Toolkit 3, a novelMonitoring and Discovery Serviceversion 3 (MDS-3) was implemented. Like MDS-2,
MDS-3 is based on a hierarchical architecture, but it has been redesigned to be compliant with theOpen Grid Services
Architecture(OGSA) model [30]. In the OGSA framework each resource is represented as aGrid service, therefore
resource discovery mainly deals with the problem of locating and querying information about useful Grid Services.
In MDS-3 information about resources is provided by theIndex Services. An Index Service is a Grid service that
holds information (calledService Data) about a set of Grid Services registered to it. Service Data are composed of
the so-calledService Data Elements(SDEs), which describe the properties of a single resource. A primary function
of the Index Service is to provide an interface for querying aggregate views of Service Data collected from registered
services. There is typically one Index Service per VO. Very often, when a VO consists of multiple large sites, each site
runs its own Index Service that indexes the various resources available at that site. Then each of those Index Services
is included in the VO’s Index Service. The Index Service is composed of two main components: theProviderswhich
are responsible for generating SDEs, and theAggregatorwhich is responsible for aggregating and indexing the SDEs
coming from the hosts in the VO.

In Globus Toolkit 4, theMonitoring and Discovery Serviceversion 4 (MDS-4) provides aWeb Services Resource
Framework(WSRF) [20] compliant implementation of the Index Service, as well as novel mechanisms for delivering
notifications in the presence of events that match a set of specified rules (Trigger Service).

2.2 Condor

Condor is a resource management system for compute-intensive jobs [46]. Condor receives jobs from users and then
finds suitable, available resources on the network where these jobs can be executed.

Condor adopts a centralized scheduling model. The scheduling task is performed by aCentral Manager(CM).
The CM collects information about the state of resources and receives the users’ requests. The CM then matches
the resource description and usage policies, specified by the resource owners, with the jobs needs and decides where
to schedule them. Both resource and job descriptions are expressed using theClassAdspecification language. This
language allows the specification of job and resource attributes along with users and resource owner policies and
preferences. It adopts a semi-structured data model, so that no specific schema is required by the CM. The idea behind
ClassAds is similar to that of newspaper classified advertisements, where free resources that can accept jobs and users
that are looking for available resources publish their aids. The role of a CM is to act as a broker that selects and ranks
resource offers for the user. Subsequently, resource and user entities are put in touch, allowing them to establish a
working relationship.

Resources in Condor are represented by aResource-owner Agent(RA). Each RA periodically checks the state of its
resource and then constructs a ClassAd of the resource. The ClassAd will include the resource state and the resource
owner’s usage policies. Then, the ClassAd is sent to the CM. A Condor scheduler can thus discover new resources and
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update the state of old ones only when they advertise their state by sending ClassAds. The validity of the information
contained in the ClassAds is also related to its rate of update. The Condor scheduling process includes the possibility
that a resource may reject an assigned job due to changes incurred in its state since the last ad was sent.

Central Manager

(2) Matchmaking

Resource-owner

Agent

Customer

Agent

(1) Advertisement

(3) Match

notification

(3) Match

notification

(1) Advertisement

(4) Claiming

Figure 2: The architecture of Condor.

2.3 UNICORE

UNICORE provides a set of vertically integrated software components designed to support job definition and secure
submission to distributed computer resources [24]. The UNICORE software architecture includes theclient, the
gateway, theNetwork Job Supervisor(NJS), and theTarget System Interface(TSI).

The client enables the user to create, submit, and control jobs from any computer on the Internet. The client
connects to a gateway, which authenticates both the client and the user, before contacting the UNICORE servers,
which in turn manage the submitted jobs. Tasks destined for local hosts are executed via the native batch subsystem.
Tasks to be run at a remote site are transferred to peer gateways. All necessary data transfer and synchronizations are
performed by the servers, which also retain status information and job output, passing it to the client upon user request.

In UNICORE the definition of a job and its resource requirements are represented as anAbstract Job Object(AJO).
A client submits the AJO to a selected UNICORE site through the gateway associated to that site. The gateway passes
the AJO to a NJS of a selected Target System. Thus, the NJS translates the abstract job into a specific batch job
for the associated Target System (a process calledincarnation) [23]. In order to perform this task, the NJS consults
the so-calledIncarnation Database(IDB) which is the main resource discovery component in UNICORE. The IDB
provides the following information: (1) addresses and ports of TSI instances; (2) incarnations of abstract commands;
(2) information about available capacity and capability resources (e.g., software resources). The NJS makes also use
of static information about the Target System resources to make sure that the requested resources are available and
comply to use policies.

2.4 LCG/EGEE

The LHC Computing Project(LCG) [6] is a large-scale Grid application developed in the context of theEnabling
Grids for E-sciencE(EGEE) project. The goal of LCG is to provide a data storage and analysis infrastructure for the
high-energy physics community that will use theLarge Hadron Collider(LHC), currently being built at CERN.

The information system of the LCG/EGEE framework is based on theMonitoring and Discovery Serviceversion
2 (MDS-2) provided by Globus Toolkit 2. As in Globus Toolkit 2, a hierarchical approach is adopted in LCG: on each
node aGrid Resource Information Service(GRIS) can answer queries about all the computing and storage resources of
that node, whereas on each site aGrid Index Information Service(GIIS) is used to collect and combine the information
from the site GRIS services. The LDAP information model is used to publish static and dynamic information generated
by configuration files and other tools (the so calledinformation providers).

In LCG theBerkeley Database Information Index(BDII ) has been introduced on top of the GRIS/GIIS hierarchy.
The BDII queries the GIIS services within a given virtual organization and acts as a cache storing information about the
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Grid status in its database. Users and other Grid services (e.g., resource brokers) can query BDIIs to get information
about the Grid status and searching for the needed resources (e.g., for matchmaking purposes). Each BDII collects
information from its GIISes at a fixed refresh rate. More up-to-date information can be found by directly querying the
site GIISes of the local GRIS services that run on the specific resources.

3 Resource discovery in Peer-to-Peer systems

The P2P paradigm is based on the principle that every component of the system has the same responsibilities acting
simultaneously as a client and as a server, as opposed to the traditional client-server model. P2P systems are divided
into two main categories based on the connection protocol they employ and the way peers are organized, namely,
structured and unstructured. Structured P2P systems employ a rigid structure to interconnect the peers and to organize
the file indices, while in unstructured systems each peer is randomly connected to a fixed number of other peers
and there is no information about the location of files. The main P2P systems in each of these two categories are
described below. Furthermore, hybrid approaches that have been proposed to overcome the drawbacks of the two
main approaches while retaining their benefits are also discussed.

3.1 Unstructured P2P systems

Napster was introduced in 1999 and is historically the first P2P system to achieve global-scale deployment, reaching
50 millions users in just one year. It comprised a central server which stored the index of all files shared by the
participating peers. To locate a file a user queried the central server using the name of the file and received as a result
the IP address of a peer containing the file. A direct connection was established between the requesting peer and
the peer containing the file in order for the download to be effected. In other words, although file downloads were
performed in a P2P fashion, resource discovery was centralized. The central index server used in Napster is not easy
to scale and was a single point of failure. Although Napster is historically considered as the first unstructured P2P
system to be deployed, the existence of a central index differentiates it considerably from today’s unstructured P2P
systems. Napster has been characterized as “the fastest growing Internet application ever”.

In today’s unstructured P2P systems, each peer maintains a constant number of connections to other peers, called
its neighbors, thus an overlay network of peers is formed. Gnutella and KaZaA are considered two of the most popular
unstructured systems. Due to the lack of an underline structure in those systems, there is no information about the
location of files, thus the prevailing resource discovery method is a broadcast-like process called ”flooding”. A peer
looking for a file issues a query which is broadcast in the network. Upon receiving a query, each peer broadcasts it to
all of its neighbors except the upstream one, and sends all matching query responses to the originating peer through the
reverse path. Clearly flooding is not scalable since it creates a large volume of unnecessary traffic in the network. To
limit the number of messages generated by flooding, each message is tagged with aTime-To-Live(TTL) field. The TTL
indicates the number of hops away from its source a query should propagate. The node that initiates the flooding sets
the query’s TTL to a small positive integer, smaller than the diameter of the network. Each receiving node decreases
by one the query TTL value before broadcasting it to its own neighbors. The query propagation terminates when its
TTL reaches zero. A small TTL value can reduce the network coverage, defined as the percentage of network nodes
that receive a query, thus a file may fail to be located although present in the system.

In order to limit the vast amount of messages produced by flooding, modern unstructured P2P systems employ a
controlled flooding mechanism, also known asDynamic Querying[3]. In TTL bounded flooding, query propagation
continues until the TTL is exhausted, regardless of whether the desirable results may have been located early the
flooding process. In order to gradually increase the cost of flooding in relation to the amount of the results obtained, in
dynamic querying the peer that initiates a query tries to control the query’s propagation by sending it only to a subset of
its neighbors and with a small TTL. If this first attempt does not produce a sufficient number of results, the originating
peer may broadcast the query again to a different set of neighbors with increased TTL. This process is repeated until
a satisfactory amount of results is received, or until all the neighbors are exhausted.

Many other techniques have been proposed in the literature to alleviate the excessive traffic problem caused by
flooding and to deal with the traffic/coverage trade-off [71]. One of the first alternatives to be proposed wasrandom
walks. Each node forwards each query it receives to a single neighboring node chosen at random. In this case the TTL
parameter designates the number of hops the walker should propagate. Random walks produce very little traffic, just
one query message per hop, but reduce considerably network coverage and have long response time. As an alternative
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multiple random walkshave been proposed. Although compared to the single random walk this method has better
behavior, it still suffers from low network coverage and slow response time. Hybrid methods that combine flooding
and random walks have been proposed in [31]. In another family of algorithms (known as directed searches) query
messages are forwarded not randomly but rather selectively to part of a node’s neighbors based on some criteria or
statistical information. For example, each node selects the firstk neighbors that returned the most query responses, or
thek highest capacity nodes, or thek connections with the smallest latency to forward new queries [49]. A somewhat
different approach namedforwarding indices[18] builds a structure that resembles a routing table at each node. This
structure stores the number of responses returned through each neighbor on each one of a pre-selected list of topics.
Other techniques include query caching, and the incorporation of semantic information in the network [19, 66, 73].

Experiments demonstrated that peers with low bandwidth connections (i.e., nodes connected over dial-up modems)
are easily saturated by flooding request and thus slow down resource discovery in unstructured P2P systems. To
exploiting peer heterogeneity to the system’s benefit low bandwidth peers had to be isolated from query routing. By
curbing the definition of P2P systems, in [72, 16] a distinction between peers was introduced and a two level hierarchy
of peers was constructed. High bandwidth peers, theSuperpeers(also known asUltrapeers), formed an unstructured
overlay network, while peers with low bandwidth, theleaves, were connected only to Superpeers. Each Superpeer
has an index of all the files contained in its leaves. Any request originating at a leaf peer is forwarded through the
Superpeers it is connected to, while flooding is performed only at the Superpeer overlay network. This modification
allows the system to retain the simplicity of unstructured systems while offering improved scalability.

3.2 Structured P2P systems

Structured P2P systems are equipped with a distributed indexing service which is based on hashing, and is known as
Distributed Hash Table(DHT). Peers and files are mapped, usually through the same hash function, to a key space.
Peers and file indices are organized in a rigid structured according to their keys, which facilitates the location of files.
Most structured P2P systems support naturally exact match queries inO(log N) hops, whereN is the size of the key
space, and range queries. However they do not support directly keyword searches which constitute the core of queries
in real P2P systems. The number of different structures that can be employed has enabled the development of a number
of structured systems. In what follows we review some of the most popular structured P2P systems.

Chord [67] is the first structured P2P system to be proposed. In Chord, both peers and files are mapped through
the same hash function to anm-bit key space. The peers in Chord are ordered in an 1-dimensional circle according to
their keys and each peer is connected to (has knowledge of) its successor and its predecessor in the circle. Each peer
stores the index of all files whose keys fall in the range between the key of its predecessor and its own key. To speed
up the lookup process, each peer with keyx is connected to peers with keysx+2i(modN), for 0 ≤ i < log N , where
N is the size of the key space, for a total oflog N neighbors per peer. In case no peer is currently present in the system
for a specific key, a connection is established to the first successor present. Each lookup message is routed to the
node whose key is numerically closest to the requested file key. This lookup process emulates the binary search, thus
requiresO(log N) steps and messages. Since each peer has knowledge ofO(log N) other peers the arrival or departure
of a peer will not have a global effect but will affect at mostlog N other peers. Periodic stabilization messages are
used to help maintain Chord’s rigid structure. Whenever a peer joins the network, it takes responsibility of certain file
keys previously assigned to its successor. When a peer leaves the network, all of its assigned file keys become the
responsibility of its successor. In general, each peer is responsible for an equal number of keys with high probability,
thus load balancing is achieved.

The Content-Addressable Network(CAN) [59] tries to limit to a constant the number of each peer’s neighbors,
regardless the size of the network or the key space. The peers in CAN are organized in ad-dimensional torus. Each
peer’s key consists ofd numbers and corresponds to a point in ad-dimensional space. Each peer is connected to its
next and previous peer in each dimension, thus havingO(d) neighbors. Thed-dimensional space is divided equally
among the available peers and each peer is responsible for all file keys corresponding to points in its own subspace.
Each lookup request can be forwarded over any of thed dimensions, leading to a lookup cost ofO(N1/d) in time
and number of messages. For instance, ifd = 2, theN available keys range from(0, 0) to (

√
N,
√

N). By moving
along the edges of the2-dimensional plane, any file can be located in at most2 ∗√N hops requiring the same number
of messages. The generalization tod dimensions follows naturally. Peer arrivals and departures in CAN have a very
localized effect, since they only affectO(d) other peers. In order for a new peer to join, it contacts a peer already in
the system, which splits its subspace in two halves and assigns responsibility of one halve to the new peer. Neighbors
are set accordingly. An extension of CAN employs more than one hash functions in order to support replication and
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thus to reduce lookup cost and to provide fault tolerance in case of unpredictable peer departures.
Koorde[25] has the same lookup costs as Chord, while maintaining a constant number of neighbors per peer. This

is achieved by exploiting the properties of the de Bruijn graph. Each peer in Koorde is mapped to a binary key and
is connected to two other peers, whose keys are formed by shifting the peer’s key once to the left, dropping the high
order bit and inserting as low order bits 0 and 1. File lookup is performed by emulating routing in the de Bruijn graph
and thus requiresO(log N) hops.

Structured P2P systems are more scalable than unstructured ones, in terms of traffic load, but need to have strong
self-organization capabilities in order to be able to maintain their rigid structure. Structured systems are prone to node
failure, and unpredictable node departures. Although in the past few years considerable effort has been devoted the
research on structured P2P systems, they have also earned a lot of criticism for their high maintenance cost in the
presence of high churn, their difficulties to support more general queries, and their exclusive support for exact matches
which constitute a relatively small percentage of queries in real P2P systems [16].

3.3 Hybrid approaches

Both unstructured and structured approaches have advantages and disadvantages. Several hybrid approaches have
been proposed to overcome the drawbacks of each while retaining their benefits.

In Pastry[61] each peer is mapped to a random128-bit node identifier (nodeId). Pastry nodes are organized in a
circle according to their nodeIds. Each peer recursively divides in two parts the space its nodeId belongs. The target
is for each peer to maintain knowledge of at least one peer belonging to each resulting subdivision. For this purpose,
each peer stores a table oflog N rows. Rowi, 0 ≤ i < log N , of a peer’s table contains a nodeId that has a common
prefix of sizei− 1 and differs in theith bit with its own nodeId. For example, a peer with nodeId 1001010 maintains
knowledge of peers whose nodeIds have the following prefixes 0, 11, 101, 1000, . . . , 1001011 (which is the next peer
in the circle). Each lookup message is routed to the peer whose nodeId has the longest common prefix with the lookup
Id. After each routing step, the common prefix of the lookup Id with the current peer Id increases in length by one.
Thus, each file can be located inlog N steps. For robustness, peers in Pastry maintain knowledge of the2k closest
peers, instead of just the next and the previous ones.

In Kademlia[52] each peer is mapped to a160-bit key through the SHA-1 hash function. Each peer subdivides
the space of possible distances between any keys, defined as their XOR. Each peer is aware of at least one peer, whose
distance from its key is between2i and2i + 1, for 0 ≤ i < log N . Those ranges are called “buckets”. For redundancy
and fault-tolerance, each peer tries to maintain knowledge ofk peers in each bucket. For the same reason, each file
key is also stored on thek peers closest to its key. Routing is performed by calculating the XOR of the requesting
peer’s key with the lookup key and forwarding the lookup request to a peer of the appropriate bucket. Kademlia peers
monitor incoming traffic to become aware of alive peers in the network in order to update their buckets with more
“fresh” contacts, at no cost. Resorting to lookups to refresh a bucket’s contact is thus performed rarely, usually by new
peers, during their bootstrap phase. Furthermore, there is no need for a departing peer to leave gracefully, since stale
bucket entries are purged.

Kademlia and Pastry are similarly structured. Their structure exhibits less “strictness” compared to Chord and
CAN, in the sense that for each defined subspace, any peer belonging to that subspace can serve as a contact. In Chord
and CAN, all neighbor connections are strictly defined. Kademlia is the first hybrid P2P system to achieve global-scale
deployment, with over one million users.

3.4 Comparison of the various models

The global-scale deployment of P2P systems makes scalability a very important issue. Unstructured P2P systems,
lack in this aspect, due to the traffic generated by flooding. Improvements such as random walks have been proposed,
to reduce the traffic generated, at the great expense of increased response time and reduced network coverage. Other
proposals include sending the broadcast only to neighbors that have the highest history of returning results, or even
disconnect from neighbors that do not return enough results (neighbor selection).

On the other hand, structure makes scalability feasible, but it is difficult to maintain under high churn. This turns
out to be a serious consideration since P2P systems are intended for the intermittent user that joins, departs, and rejoin
the system totally unpredictably. Furthermore, for each data item in the system, the peer with the appropriate Id
must be notified periodically. This results to either increased traffic, if the period is too small, or stale information (a
peer holds information for a file shared by another peer that has left the system), if the period is too large. Although
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this problem is not vital in file-sharing P2P systems, it would be an issue if structured P2P systems are going to be
used in Grid resource discovery, since resource are highly dynamic (CPU load, free memory, etc). In unstructured
systems, where each peer answers queries about its own data only, each request will be checked against the latest
data. On the other hand, the order and the data locality inherited in structured P2P systems is a valuable asset for Grid
resource discovery, since it enables ranged queries to be performed efficiently. In contrast, to perform range queries in
unstructured systems, one would have to contact every single peer.

In Table 2 a qualitative comparison between unstructured and structured systems is attempted based on the follow-
ing criteria:

• Scalability (time): Number of hops a query propagates;

• Scalability (traffic): Number of query messages required;

• Robustness: Resilience under high churn;

• Periodic update: Need for data to be republished periodically;

• Range queries: Ability to efficiently support range queries.

Table 2: Unstructured vs structured P2P systems.
P2P system Scalability Scalability Robustness Periodic update Range queries

(time) (traffic)
Unstructured O(log N) N*avg degree High No No
Structured O(log N) O(log N) Lower Yes Yes

Regarding system scalability in time and traffic the worse-case bound is given for a system withN peers. Furthermore,
we assume unstructured P2P system ofN nodes with a random overlay, thusO(log N) diameter.

4 P2P-based Grid resource discovery systems

As the Grid size increases, centralized and hierarchical approaches to Grid information systems do not guarantee
scalability and fault tolerance. As pointed out earlier, a practical approach towards scalable solutions is offered by P2P
models. The remainder of this section reviews some recently proposed systems that adopt the P2P approach to Grid
resource discovery.

4.1 Unstructured systems

In [36] Iamnitchi et al. propose a fully decentralized P2P architecture for resource discovery in Grid environments. In
this architecture every participant in a Virtual Organization (VO) publishes information on one or more local servers,
callednodesor peers, that store and provide access to local resource information. A node may provide information
about one resource (e.g., itself) or multiple resources (e.g., all resources shared by an organization). Users send their
requests to some known (typically local) node. The node responds with a matching resource description if it has them
locally, otherwise it forwards the requests to another node. Intermediate nodes forward a request until its TTL expires
or matching resources are found, whichever occur first. If a node has information matching a forwarded request, it
sends the response directly to the node that initiated the forwarding, which in turn will send it to its user.

The architecture partitions the resource discovery solution into four components:membership protocol, overlay
construction, preprocessing, and request processing. The membership protocol specifies how new nodes join the
network and how nodes learn about each others. The overlay construction function selects the set of collaborators
from the local membership list. Preprocessing refers to off-line processing used to enhance search performance prior
to executing requests. The request processing implements the request propagation strategy. This strategy decides to
which node (among the locally known ones) a request is to be forwarded. In addition to contact addresses, nodes can
store additional information about their neighbors, such as statistical information about previously answered requests.
The tradeoff between the amount of information kept for each neighbor and the search performance generates four
request propagation strategies:random walk, learning-based, best-neighbor, learning-based + best-neighbor.
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Figure 3: The architecture proposed in [69].

In the random walk strategy the node to which a request is forwarded is chosen randomly. In the learning-based
strategy nodes learn from experience by recording the requests answered by other nodes. A request is forwarded to the
peer that answered similar requests previously. If no relevant experience exists, the request is forwarded to a randomly
chosen node. The best neighbor algorithm records the number of answers received from each peer, and a request
is forwarded to the peer that answered the largest number of requests. Finally, the learning-based + best-neighbor
strategy is identical with the learning-based strategy except that, when no relevant experience exists, the request is
forwarded to the best neighbor.

Experimental results obtained on a Grid emulator showed that the learning-based strategy is the best regardless
of request distribution. Key to the performance of the learning-based strategy is the fact that it takes advantage
of similarity in requests by using a possibly large cache. It starts with low performance until it builds its cache. As
expected, the random-forwarding algorithm resulted the least efficient, but has the advantage that no additional storage
space is required on nodes to record history.

In [69] Talia et al. propose a P2P architecture for resource discovery in OGSA-compliant Grids. The architecture
is composed of two layers (see Fig. 3): the lower one is a hierarchy ofIndex Services(as provided by Globus Toolkit
versions 3 and 4), which publish information owned by each VO; the upper one is aP2P Layer, which collects and
distributes this information. The P2P Layer includes two types of OGSA-compliant Web Services:Peer Servicesused
to perform resource discovery, andContact Servicesthat allow Peer Services to organize themselves in a P2P network.

There is one Peer Service per VO. Each Peer Service is connected with a set of Peer Services - its neighbors - and
exchanges query/response messages with them in a P2P mode. A connection between two neighbors is a logical state
that enables them to directly exchange messages. Direct communication is allowed only between neighbors. There-
fore, a query message is sent by a Peer Service only to its neighbors, which in turn will forward it to their neighbors.
A query message is processed by a Peer Service by invoking the top-level Index Service of the corresponding VO. A
query response is sent back along the same path that carried the incoming query message. To join the P2P network,
a Peer Service must know the URL of at least one Peer Services to connect to. An appropriate number of Contact
Services is distributed in the Grid to support this procedure. Contact Services cache the URLs of known Peer Services;
a Peer Service may contact one or more well known Contact Services to obtain the URLs of registered Peer Services.

An extension of the Gnutella protocol is adopted to exchange discovery messages among Peer Services at the P2P
Layer. This protocol uses ad hoc techniques to make Web Services effective as a way to exchange discovery messages
in a P2P fashion. In particular, two main strategies are adopted(1) message buffering: messages to be delivered to
the same peer are buffered and sent in a single packet at regular time intervals; and(2) message merging: messages
with the same header (i.e., same type, identifier, and receiver) are merged into a single message with a cumulative
body. Experimental results showed that appropriate message buffering and merging strategies produce significant
performance improvements, both in terms of number and distribution of Web Service operations processed.

In [51] Mastroianni et al. adopt thesuper-peermodel to design a P2P-based Grid information service. The super-
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peer model has been originally proposed to achieve a balance between the inherent efficiency of centralized search,
and the autonomy, load balancing and fault-tolerant features offered by distributed search [72]. A super-peer node
acts as a centralized server for a number of regular peers, while super-peers connect to each other to form an overlay
network that exploits P2P mechanisms at a higher level.

The super-peer model is advantageously exploited in the Grid context because it is naturally appropriate for large-
scale Grid environments. In fact, a large-scale Grid can be viewed as a network interconnecting small-scale, proprietary
Physical Organizations(POs), where each PO is composed of a set of Grid nodes within one administrative domain.
Within each PO, one or more nodes (e.g., those with the largest capacity) act as super-peers, while the other nodes
use super-peers to access the Grid and search for resources and services. A super-peer has two major roles: it is
responsible for the communication with the other POs and it maintains metadata of all nodes in the local PO.

The resource discovery protocol works as follows. Query messages generated by a Grid node are forwarded to
the local super-peer. The super-peer examines the local information service to verify if the requested resources are
present in the nodes of the local PO. If this is the case it sends to the requesting node a queryHit containing the IDs
of the nodes containing the requested resources. Otherwise, the super-peer forwards a copy of the query to a selected
number of neighbor super-peers, which in turn contact the respective information system, and so on. Whenever a
resource matching the query criteria is found in a remote PO, a queryHit is generated and is forwarded along the same
path to the requesting node, and a notification message is sent by the remote super-peer to the node that handles the
discovered resource. The set of neighbors to which a query is forwarded is determined based on statistical information
about previous queryHits received from the the neighboring super-peers. Moreover, a number of strategies are adopted
to decrease the network load, reduce the response time, and increase the probability of success (i.e., the probability
that a query issued by a peer will be followed by at least one queryHit).

Puppin et al. propose another Grid information service based on the super-peer model [57]. Grid nodes are grouped
into clusters, where each cluster may include one or more super-peer nodes. The system defines two main components:
theAgentand theAggregator. The Agents works as an OGSA-compliant Grid Service available at each network node.
It publishes all information made available by theinformation providers. The information providers periodically query
the resources and store the gathered information asService Data Element(SDE). When a resource is published, the
name of its Service Data is broadcast to all the Aggregators in the cluster.

Aggregators work as super-peers, acting as servers within their cluster, and as peers in the network created by
all the Aggregators. Each Aggregator is thus responsible for collecting data, replying to queries, forwarding queries
to other Aggregators, and keeping an index of the information stored in each neighbor Aggregator. TheHop-Count
Routing Index(HRI) is used in this system to improve the performance of routing and to prevent the P2P network
from being flooded. The HRI is used to exchange queries among super-peers and, in particular, to select the neighbor
super-peers with the highest probability of success.

In [50] Marzolla et al. propose another system for discovering Grid resources based on routing indexes. In this
system, nodes are organized in a tree-structured overlay network, where each node maintains information about the
set of resources it manages directly and a condensed description of the resources present in the sub-trees rooted in
each of its neighboring nodes. The data location algorithm exploits those indexes to route queries towards areas where
matches can be found.

Data about resources is mapped in the following way. For each possible attribute of a resource item, the domain of
the attribute is split intok sub-intervals. The value ofk may differ from one attribute type to another. Given a resource,
the index for attributeA of the resource is represented by ak-bit vector, with all of its entries set to 0, except the one
corresponding to the sub-interval that contains the actual value ofA. The index that represents attributeA for all the
local resources of a peerP is easily obtained by performing a logicalORoperation of all the attribute bit vectors of the
local items. Moreover, for each attribute, nodeP receives from each neighborNp an index that is the bitwise union
(OR) of the local bit vectors of all peers present in the sub-tree routed atNp.

When a peerP receives a multi-attribute range query it decomposes it into a set of sub-queries, one per attribute.
Each sub-queryQ is then mapped into a binary vector of the same lengthk of the vector that represents the attribute
related to the query. All the entries that correspond to sub-intervals contained in the range specified by the sub-query
are set to 1. Subsequently, the sub-queries are first matched against local indexes, in order to find out whether there are
local resources satisfying the query. Then, the sub-queries are matched against the routing indexes and are eventually
routed only to those neighbors whose indexes satisfy all the sub-queries. Whenever there are data value changes,
update messages are sent to neighbors only if the new bitmap representation of the resources differs from the old one,
already known by the neighbors. Simulation results show that the proposed update and query processing algorithms
have good scalability properties, meaning that query messages are routed to a relatively small number of peers without
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Figure 4: Example of a network with bit vector indexes, as proposed in [50].

flooding the network and update messages involve a constant number of peers, regardless of network size.
Table 3 summarizes the main features of the unstructured systems described above in terms of architecture, re-

source indexing, and query resolution strategy.

Table 3: Qualitative comparison of Grid systems based on unstructured P2P systems.
System Architecture Resource indexing Query resolution

Iamnitchi
et al. [36]

Flat P2P overlay net-
work, including one
or more peers per VO.

Each peer provides infor-
mation about one or more
resources.

Queries can be forwarded using differ-
ent strategies: random walk, learning-
based, best-neighbor, learning-based +
best-neighbor.

Talia
et al. [69]

Flat P2P overlay
network, including
one OGSA-compliant
Peer Service per VO.

Within each VO, a hierar-
chy of Index Services pro-
vides information about
local resources.

Discovery messages are routed across
Peer Services using a modified
Gnutella protocol. Message buffering
and merging techniques are used to
reduce Web Service overhead.

Mastroianni
et al. [51]

Within each organi-
zation, one or more
nodes act as super-
peers.

A super-peer maintains
metadata of all nodes in
the local organization.

The set of super-peers to which a query
is forwarded is determined on the ba-
sis of statistical information about pre-
vious discovery tasks.

Puppin
et al. [57]

Nodes are grouped
into clusters, where
each cluster may
include one or more
super-peer nodes.

On each node, an Agent
publishes information
about resources. The
information is broadcast
to all super-peers in the
cluster.

The Hop-Count Routing Index is used
to select the neighbor super-peers with
the highest probability of success.

Marzolla
et al. [50]

Nodes are organized
in a tree-structured
overlay network.

Each node maintains a
condensed description of
the resources present in the
sub-trees rooted in each of
its neighboring nodes.

A multi-attribute query is decomposed
into a set of sub-queries. The sub-
queries are matched against the routing
indexes and routed only to those neigh-
bors whose indexes satisfy all the sub-
queries.

4.2 Structured systems

The authors of MAAN [13] propose an extension of the Chord protocol to handle multi-attribute range queries. Each
node of the system is part of a Chord overlay network. The values of the resources are mapped to the Chordm-bit key
space using a uniform locality preserving hash function and having one different registration for each of the resource
attributes. Each registration is composed by a pair< attribute-value, resource-info >. Each node is responsible
of maintaining the information of the registered keys that fall into the key space sector it supervises.

The resolution of multi-attribute range queries is implemented in two different ways. The first one is an iterative
approach: if a query is composed ofM sub-queries, each sub-query is resolved separately in the proper attribute

CoreGRID TR-0028 12



space. The results are then collected and intersected at the query originator node. This is the most simple and, at
the same time, inefficient way of resolving queries. Its complexity isO(

∑M
i=1 (logN + N × si)), whereM is the

number of sub-queries,N the number of peers andsi the selectivity of sub-queryi. The second method is defined as
a single attribute dominated routing. LetX be the set of resources that satisfies queryQ. ThenX should satisfy all
the sub-queries ofQ, so we haveX =

⋂
1≤i≤M Xi, whereXi is the set that satisfies the sub-query on attributeai.

The system uses the Chord to find a single set of candidate resourcesXk for attributeak. Xk is a superset ofX, so all
the solutions for queryQ are contained inXk. Since all the resources store a< attribute-value, resource-info >
pair, it is possible to exploit the resource-info field to find theXk ’s resources that match all the other sub-queries.
This method has a complexity ofO(logN + N × Smin), whereSmin is the minimum selectivity for all attributes.
Load balancing of resources is achieved by constructing a locality preserving hash function which produces a uniform
distribution of hash values. In order for the construction of this hash function to be feasible the distribution of input
attribute values should be continued, monotonically increasing, and known in advance, which is the case for many
common distribution functions.

In [10] Andrzejak and Xu propose an extension of the DHT-based CAN system to allow range queries for a Grid
information service. In this framework, all Grid resources are described by a set of attributes. For each attribute
either a standard DHT or the proposed CAN extension is used depending on its type. In particular, attributes which
have a limited number of values are handled by standard DHT systems, while for “continuous” types of attributes the
extended CAN system is adopted. To locate resources specified by several attributes, the information infrastructure
queries for each attribute present in the query the appropriate DHT and then concatenates the results in a database-like
“join” operation. A subset of the servers participating in the Grid acts as nodes in a CAN-based P2P-network and store
the pairs<attribute-value, resource-ID>. Each one of them is responsible for a certain subinterval of the attribute
values. Such a server is called anInterval Keeper(IK ) and the corresponding subinterval itsinterval. Each server
in the Grid reports its current attribute value to an IK with the appropriate interval. The authors propose different
strategies for propagating range-query requests and to minimize the communication overhead during the attribute
updates. The effectiveness of these strategies have been demonstrated through simulations using both synthetic and
real-life workloads.

SWORD [53] locates a set of machines matching user-specified constraints on both static and dynamic node char-
acteristics, including both single-node and inter-node characteristics. SWORD provides a range of mechanisms and
functionalities, including: (1) techniques for efficient handling of multi-attribute range queries that describe applica-
tion resource requirements; (2) an integrated mechanism for scalably measuring and querying inter-node attributes
without requiringO(n2) time and space; (3) a mechanism for users to encode a restricted form of utility function indi-
cating how the system should filter candidate nodes when more are available than the user needs; and (4) an optimizer
that performs this node selection based on per-node and inter-node characteristics. SWORD nodes participate in mul-
tiple DHTs, one per attribute. In particular, for each of then single-node attributesA1, A2, . . . , An that can appear in
a query, each reporting node periodically sends a tuple of all its attribute values ton DHT keysk1, k2, . . . , kn, where
eachkm is computed based on the corresponding value of attributeAm. Upon receiving such a tuple, a server (DHT
node) stores the tuple in a hash table indexed by the identity of the node described by the report. For each attributeA,
the range of possible values is mapped to a contiguous region of the DHT keyspace using a given functionfA. Thus, a
list can be obtained of all nodes that are reportingA values in some rangexmin−xmax by visiting the DHT nodes that
“own” all DHT keys betweenfA(xmin) andfA(xmax). A SWORD instance runs on every node. To issue a query, a
user opens a TCP connection to any SWORD instance and sends the query. The contacted SWORD instance initiates
the distributed range search, followed by the retrieval of the needed inter-node measurements and the invocation of the
optimizer. That node then returns the result to the user over the same TCP connection.

The system proposed in [65] exploits and extends the Pastry indexing and routing system. XenoSearch allows
multi-dimensional searchings by constructing a separate Pastry ring for each resource attribute. A peer (XenoServer)
registers itself separately in each ring. Range queries for a single attribute are possible thanks to the fact that the
information is conceptually stored in a tree where the leaves are the XenoServer nodes. The tree internal nodes are
calledAggregation Points(AP). Each AP summarizes the range of values of the nodes below it in the tree. An AP is
distinguished by a key in the same key space as the attributes. The key of an AP is a prefix of the keys of its child
nodes. By knowing the key of an AP, we can determine the range of values of the leaf-nodes of that AP, i.e., the value
range of the leaf-nodes XenoServers attributes. An AP key is mapped into the Pastry ring and the closest XenoServer
in the key space is in charge for maintaining the information related to that AP. Multi-attribute queries are resolved by
decomposing each query in a set of sub-queries, one per attribute. Then, for each sub-query, a single attribute range
query is performed. The retrieved results are then intersected in order to find the final set of resources that satisfies the
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original query. The client that originated the query is given a set of possibly matching XenoServers. The client has
to further query the nodes to know the real server’s resource state. This is necessary because the information in the
system is refreshed only periodically. Thus, the results obtained by XenoSearch may not be always up-to-date.

Mercury [11] is a Grid system that supports multi-attribute queries. It uses Symphony, an one-dimensional DHT
as its underlying architecture. Each single attribute is assigned to a different DHT, called the Hub. Each resource
is registered to the hub of each different attribute in its attribute set. To avoid querying more than one Hub during
the resolution of a multi-attribute query, each resource stores all its attribute-value pairs in all Hubs it is registered.
Since each hub indexes the resources it stores according to only one attribute, a range query is resolved based on
one attribute only. Thus, a multi-attribute query is resolved by selecting the attribute with the smallest range, and
querying the appropriate hub. The query uses the underlying DHT system to locate the resources with the smallest
value in the range of the query. It then proceeds to the next values, until the largest value in the range of the query.
The query responds with a list of all the resources in the traversed range whose other attribute values also matched
the corresponding ranges in the query. Load-balancing is performed by periodically probing the system to find load-
imbalances. A Symphony graph has been proven to be an expander, meaning that a random walk of logN hops is
enough to perform a near-perfect uniform random sampling of the network. Using this random walk, a heavily loaded
node can locate a lightly-loaded one. Upon this discovery, the first node will send a special message to the second
node, which will leave the network and rejoin in such a way that it will become neighbor of the first node, thus sharing
its load (leave-rejoin protocol).

The system proposed in Schmid et al. [63] supports multi-attribute queries by using a single one-dimensional DHT.
A space filling curve is used, to map all possible d-dimensional attribute values to a single dimension. In particular,
each resource with a set of attribute values is mapped to the node whose ID is generated by interleaving the binary
representations of its attribute values. For example a resource with three attributes with values (1 (01), 2 (10), 3(11))
will be stored in node with ID 011101. Notice here that if one needs to store resources with many attributes and each
attribute has a wide range of possible values, this might require a DHT with IDs of many bits. However, the number of
contacts a node has to maintain in a DHT of logarithmic lookup time, increases linearly with the number of bits. Each
resource computes its node’s ID according to its attribute values. Range queries are similar to point queries but may
contain some undefined bits. For example, a query of resources with attribute values (1, 2, 0-3) is 01*00*. Notice that
range query sizes can only be powers of two and can only start from values that are also powers of two. For instance,
we can not make a query of the form (1, 2, 1-3). Ranged queries are resolved much like point queries, albeit, when an
undefined query bit is encountered the query will be propagated in more than one directions. The query is propagated
to any node with additional common prefix bit with the query ID than the present node. Thus, if the querying node’s
ID is 1*****, it will forward the query to any node whose ID is in the form 0*****. In turn, that node will propagate
it to any node of the form 01****. That node, in turn, will propagate the message twice. Once to a node of the form
01000* and once to a node of the form 01100* and so on. Tree-like structures usually suffer in the sense that lookup
always starts at the root node, transforming it into a bottleneck. However, in this case, any node with a first ID bit
same with the first ID bit of the query can be used as a root node, thus eliminating this drawback.

Ratnasamy et al. [58] propose a system that utilizes a uniform hash function to distribute the storage load evenly
across the participating nodes. Since the locality of attribute values is not preserved, another overlay on top of the
underlying DHT is used to enable efficient range query resolution. All attributes are stores in a common DHT, however
a different overlay structure is used for each attribute. Each resource registers itself in one overlay structure for every
attribute it contains. A multi-attribute query is resolved in parallel in each overlay structure (separately for each
attribute it contains) and the intersection of the results is calculated at the query originator node. The overlay structure
used is a binary tree called atier. There is a different tier for each attribute. The root node of a tier is assigned the
whole attribute space while each one of its children is assigned half the range. Each resource is registered only at the
leaf node whose range contains its attribute value. The recursive subdivision of a node’s range occurs only when the
node becomes overloaded with resources. Initially, only the root node exists and all resources register to it. When
the number of resources becomes high, the root node creates two children nodes and splits the load to them. Each
tier node is assigned to a DHT node at random using a uniform hash function. For instance, a tier node of attribute A
responsible for the range of values from x to y will be mapped to the DHT node with ID = hash(A, x, y). Lookup is
performed by recursively dividing the attribute value range by two, to find the smallest range that contains the whole
of the query range. Then, the DHT lookup functionality is used to find the node responsible for that range. Then, the
subtree of that node is broadcasted, to locate all leaf nodes of that tree. This leads to a logarithmic time cost and 2*P*n
message cost. Since hashing is used, storage load is not an issue. However, even though a query start by locating
the root of the smallest subtree that contains the required range (and not the absolute root), the points where a range
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is subdivided is static. This means that, any query range, however small, that spans a border where two siblings are
divided, will need to start from their parent.

Table 4 summarizes the main features of the structured systems described above in terms of architecture, protocol,
resource registration, query resolution, and load balancing.

Table 4: Qualitative comparison of Grid systems based on structured P2P systems.

System Architecture
Basic
protocol

Multi-attribute
resource
registration

Multi-attribute query
resolution

Range
query
registration

Load balancing

MAAN [13] One DHT per at-
tribute

Chord
Each attribute is
registered in the
appropriate DHT

Each sub-query is resolved
separately and the results are
intersected at the querying
node. Single attribute dom-
inated routing

Sequential

Uniform, locality
preserving hash
function. Value
distribution is
known in advance

Andrzejak et
al. [10]

One DHT per at-
tribute

CAN
Each attribute is
registered in the
appropriate DHT

Each sub-query is resolved
separately, and results are
intersected at the querying
node

Flooding
Simple neighbor
load exchange

SWORD [53]

Each attribute is
assigned a differ-
ent subregion of a
common DHT

Bamboo
(Pastry)

Each attribute
is registered in
the appropriate
region of the
common DHT

The query is sent to the sub-
region of the most selective
attribute, or an attribute cho-
sen at random

Tree-like
Leave-rejoin pro-
tocol. Customized
hash functions

XenoSearch
[65]

One DHT per at-
tribute

Pastry
Each attribute is
registered in the
appropriate DHT

Each sub-query is resolved
separately and the results are
intersected at the querying
node

Tree-like None

Mercury [11] One DHT per at-
tribute

Symphony
All attributes are
registered in ev-
ery DHT

Lookup on the DHT of the
attribute with the smallest
range

Sequential

Periodical net-
work sampling
to find load-
imbalances (leave-
rejoin protocol)

Schmidt
et al. [63]

One DHT for all
attributes

Chord
Point query
to register the
attribute

Ranged query contains un-
known bits. Each step
forwards query to neighbor
with an additional common
prefix bit. Forward twice for
each unknown bit.

Tree-like
Exchange of load
between neighbors

Ratnasamy
et al. [58]

A range dividing
tree per attribute.
All trees mapped
in a single DHT

Any
Each attribute is
registered in the
appropriate tier

Each sub-query is resolved
separately and the results are
intersected at the querying
node

Tree-like
Uniform hash and
attribute range
subdivision

5 Grid resource discovery based on semantic information

5.1 Semantic resource description

As resource discovery in Grids is about finding relevant resources, the overall quality of a discovery service is deter-
mined not only by usual QoS measures such as performance, reliability and availability, but also by its precision that
measures how many of the discovered resources are relevant, and how relevant they are. Precise resource discovery
should be able to findbest approximatematches usable for the requester. Resource discovery in Grids has to deal with
a large number of volatile resources described using different approaches and languages, and managed by distinct VOs.
In such heterogeneous and dynamic environments, syntactic keyword and taxonomy-based matching is insufficient to
achieve high precision resource discovery. In order to improve the precision of a discovery service, resources must
be given well-defined meaning carried by semantic information added to resource descriptions [22, 32, 27, 14]. This
semantic metadata describe the capabilities, interface, and internal organization, as well as the functional and non-
functional properties of a resource. Semantic information is defined in terms of concepts and relations specified in an
ontology.Ontologyis an explicit specification of a conceptualization that serves as a foundation for formal representa-
tion of knowledge [33]. It formally specifies how to represent objects, concepts and other entities that are assumed to
exist in some area of interest and the relationships among them [28]. In semantic-based resource-discovery, common
ontologies facilitate communication between service providers and consumers.
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There are several design issues to be considered when developing a scalable semantic-based resource discovery
service: (1) markup languages for ontologies and semantic resource description; (2) algorithms, programming envi-
ronments and tools to process semantic information, such as matchmaking algorithms, ontology APIs and inference
engines; (3) organization of information sources for semantic-based resource discovery that can span administrative
domains, including storing, querying, replication and caching of semantic information and ontologies; (4) propagation
and routing of discovery messages to/from information sources distributed among VOs.

5.2 Markup languages

In existing Grid middleware, services are described in XML-based GWSDL used in GT3 and gLite, and WSRF used
in GT4. There exist several languages used for ontology specification and semantic service description.Resource
Description Framework(RDF) [8] is a language for representing information about resources as metadata.Web
Ontology Language(OWL) [9] is a semantic markup language used to describe ontologies.Web Services Ontology
(OWL-S) [1] defines a standard ontology for Web services. A service description in OWL-S comprises three main
parts: theprofile that specifies what that service does and its interface, themodelwhich describes how the service is
composed and how it works and thegroundingthat says how to access the service.Web Service Modeling Ontology
(WSMO) is a more recent semantic service description framework [60, 42] that, in particular, provides support for
inter-ontology translation.

5.3 Matchmaking

Matchmaking is an important step in semantic-based resource discovery. In multi-agent systems, matchmaking de-
notes the process of identifying agents with similar capabilities [41]. Matchmaking for Web/Grid Services is based on
the notion of similar services [55] since it is unrealistic to expect services to be exactly identical. Several matchmaking
algorithms have been developed for Web/Grid service discovery. For example, the algorithms proposed in [55, 43]
calculate a degree of resemblance (“similarity”) between two services by comparing their profiles. Services can be
also matched by their OWL-S models [56] where service models are matched recursively until non-composite service
components are reached. In [70] authors designed and prototyped a matchmaker that performs resource matching
using ontologies and inference rules based on Horn logic and F-Logic. The approach to matching different kinds of
P2P/Grid resources presented in [15] deals with resource descriptions and requests defined using different ontologies,
and uses linguistic and contextual information for determining relationships between nodes in ontologies.

5.4 Efforts on Grid semantic-based resource discovery

Semantic-based resource discovery is addressed in many research projects in Grid computing. For example, semantic-
based resource discovery using brokers is described in [12]. A broker can, on behalf of its clients, discover resources
defined in different resource schemas: Globus’ GLUE and Unicore’s IDB, address the issue of interoperability between
Globus and Unicore. In [47], authors propose an approach to resource discovery in the context of bioinformatics
that allows semantic descriptions of both Grid services and data produced by experiments. It allows descriptions
to be stored in different repositories and enables to search descriptions in a personalized way by attaching third-party
metadata to service descriptions. In [48], the authors propose to use two kinds of ontologies: application ontologies and
Grid service ontologies. Using application ontology allows refining the results of semantic-based resource discovery
by performing discovery in a specific application context. The proposed matchmaking process is enhanced using a
similarity metric to quantify the quality of a match. In [17], semantic-based service discovery is used as a part of a
knowledge-based approach to semantic service composition. A prototype workflow construction environment based
on the proposed approach supports the runtime recommendation of a service solution, service discovery via semantic
service descriptions and knowledge-based configuration of selected services.

Information sources of resource discovery and monitoring in Grids is an infrastructure that provides the ability to
collect and retrieve information about Grid resources (descriptions, availability, status and states) via direct querying
and via a subscription/notification mechanism. As mentioned earlier, organization of information sources for resource
discovery, such as storing, querying, replication and caching of resource information containing semantic metadata and
ontologies, propagation and routing of discovery requests and replies, is one of the key design issues to be considered
when developing a scalable semantic-based recourse discovery service that can span different administrative domains.
Many efforts are currently underway in the Grid community to use P2P techniques for building distributed, scalable
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and self-organizing Grid services [26, 68]. We also believe that the P2P approach to building distributed systems can
be applied in developing a distributed semantic-based discovery mechanism that allows scalable and efficient resource
discovery within a single VO as well as across VOs. In what follows, we present some of the related work in this area.

Several researchers proposed to use (un)structured P2P networks as a medium for propagation of service discovery
queries. For example,Web Services P2P Discovery Service(WSPDS), a fully decentralized and interoperable discovery
service with semantic-level matching capability is presented in [39]. The discovery service is provided and consumed
in a P2P network of WSPDS peers calledserventswhere a servent can receive discovery requests from its user and its
neighboring servents, and resolve the requests by querying its local site for matching services or/and by propagating
requests to the neighboring servents. The authors present two architectures of the discovery service: (1) an unstructured
P2P network of servents based on the Gnutella protocol and a keyword-matching where the servents collaborate
to propagate discovery queries based on the probabilistic TTL-bounded flooding dissemination mechanism; (2) a
semantic-enabled content-based P2P network of WSPDS servents called aQuerical Data Network(QDN) [40] where
identity for each node is defined by its data content. In the second prototype, WSDL service descriptions are augmented
with DAML-S service profiles. In addition to keyword-matching, the WSPDS query engine also supports semantic-
matching of the operational service interfaces using the matchmaking algorithm proposed in [55]. Each QDN virtual
node represents a service operation; one physical node can carry several virtual QDN nodes. The identity of QDN
virtual nodes is defined as the ontologies associated with the input/output service parameters. When a node joins the
network it is linked to the nodes that have semantically the most similar input/output. In query propagation, each
servent that receives a query forwards it to the neighbor with the most similar identity to the query.

The scalable semantic routing architecture for Grid service discovery, presented in [45], goes beyond [39] in
the sense that it utilizes a hierarchical structure to improve the scalability and robustness. RDF is used to represent
both resources and queries. A hierarchical routing algorithm supports complex queries without resorting to network
flooding. The routing algorithms use Bloom filters for aggregation resource information and to help route the queries.
Experimental results prove the efficiency and scalability of the scheme.

Distributed hash tables can be used for storing semantic information in Grids. For example, in [35], the authors
present an approach to semantic resource discovery in the Grid. A P2P network maintains a resource catalogue using
DHT algorithms. Peers provide resource descriptions and background knowledge in ontologies based on description
logic, and each peer can query the network for available resources. Each peer may have its own ontology represented
as aclassification DAGthat captures subsumption relations between concepts in the ontology. The peer’s ontology is
possibly incomplete, but it can be completed by ontologies of other peers. The authors propose a DHT algorithm that
distributes local classification DAGs among nodes of the P2P network to form a distributed virtual classification DAG
used by all peers for resource discovery. The DHT algorithm uses a concept name as a key to determine the node
which will store the information for this concept including a list of super-concepts according to the DAG and a list of
resources – instances of the concept. When querying for a simple concept, the DHT is looked up using the concept
name to determine the node which is responsible for the concept being queried. A complex query is formulated in terms
of simple concepts, and the discovery result is built up by querying the network for instances of every simple concept
which occurs in the complex concept. When a new node joins the network, it iterates through its classification DAG
to identify the nodes which need to be informed about new super-concepts or new instances. The nodes collaborate
to disseminate the new information in the network. This way, the distributed ontology grows as more and more
peers joining the network publish their local knowledge. When a node leaves the network, a dedicated distributed
algorithm removes semantic information on concept instances for which the node was responsible. Simulation results
demonstrate that this approach scales well for large number of concepts and nodes.

Another ontology-based search scheme using DHTs is proposed in [62].Semantic-aware network(SA Net) is a
structured P2P overlay architecture that supports basic functionalities of personalized resource discovery. Semantic
resource discovery reflecting user interests is enabled by ontology-based resource representations. In the paper, the SA
Net search scheme calledSemantic-driven Hashing(SDH) is presented. SDH uses lexical-based ontology that allows
indexing and searching in structured P2P overlay infrastructure.

A two-level service discovery architecture is proposed in [74]. The lower level organizes community overlays of
different service categories defined in the service ontology. Message propagation is limited into related communities
only. The upper layer is based on a DHT which provides efficient navigation between communities. The intra-
community search for service providers is based on a simple and lightweight greedy search based service location
(GSBSL) method. Simulation results show that while the search efficiency is improved compared to flat overlays, the
management overhead is still acceptable and controllable.
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6 Final remarks and future research directions

Several P2P systems for resource discovery in Grid environments have been recently proposed. Such systems adopt
different models and solutions, including structured or unstructured overlay networks, fully decentralized or super-peer
architectures, and diverse strategies for improving routing performance and search precision. Moreover, they provide
very different search capabilities, ranging from single-attribute search to multi-attribute and range queries. The goal
of this section is to identify key elements, advantages and disadvantages of the above mentioned models. We start by
comparing the P2P based Grid systems discussed in this report with respect to the organization and requirements of
current Grid systems.

An important aspect that distinguishes Grid from P2P systems is the organization of resources. As opposed to P2P
systems, large-scale Grids are generally built as federations of smaller Grids managed by diverse organizations. This
organization-based architecture applies to most of the systems discussed earlier in this report, in which typically one
node per organization participates in the P2P network [36, 69, 51, 57]. Another important element in current Grids is
the emergence of the OGSA and Web services as standard technologies. The OGSA model provides an opportunity
to integrate P2P models in Grid environments since it offers an open cooperation model that allows Grid entities to
be composed in a decentralized way. Some of the P2P resource discovery systems discussed before adopt OGSA and
Web services as basic technology [69, 51, 57].

The general requirements have been partially introduced in Section 3 when discussing about general P2P models
for resource discovery: scalability, reliability, and support for dynamicity. Supporting very dynamic environments
is fundamental, since Grid nodes can join and leave an organization at any time, and the availability and status of
resources within each node change dynamically over time. Another fundamental requirement in Grid systems is the
ability to perform multi-attribute and range queries.

With respect to scalability (both in time and traffic), structured systems perform better than unstructured systems,
since Distributed Hash Tables (DHTs) are more scalable, self-organizing and load balanced than pure-P2P overlay
networks. Another important advantage of DHTs is their ability to efficiently support range queries inherited from
their data locality property. All structured systems described in this report provide support for range queries and
multi-attribute search capabilities. On the other hand, structured systems can be more difficult to maintain in very
dynamic Grid environments, where the availability and status of resources vary significantly over time. As discussed
in Section 3, for each resource in the system, the peer with the appropriate ID must be notified periodically, resulting
to either increased traffic (if the period is too small), or stale information (if the period is too large).

Unstructured systems, on the other hand, adopt diverse strategies to provide up-to-date results with limited network
traffic, including experience-based query forwarding [36, 51], message buffering and merging [69], routing indexes
[57, 50], and super-peer architectures [51, 57]. In particular, it has been demonstrated that the super-peer model is
naturally appropriate to the organization-based nature of current Grids, ensuring limited network load and reduced
response time with respect to pure-decentralized P2P systems [51].

As stated in Section 3, both unstructured and structured systems show advantages and disadvantages. Hybrid
approaches can be adopted to combine the efficiency of structured systems and the dynamicity of unstructured sys-
tem, while overcoming their inherent drawbacks. For instance, structured protocols could be adopted for relatively
static information, whereas unstructured approaches could be employed for more dynamic information. Moreover,
the organization-based nature of Grids suggests the use of a super-peer architecture, in which different strategies (e.g.
structured or unstructured protocols) may be adopted for intra-organization and inter-organization resource discovery.
Finally, the OGSA model can be of great importance to federate different information services into a Grid resource
discovery system, using Web services conventions as a means to ensure interoperability among the various peer sub-
systems.

Interoperability is a general and fundamental requirement for Grid computing therefore it must be considered
when developing a scalable discovery service that can span multiple administrative domains. Extending resource
descriptions with semantic annotations that give well-defined meaning to resource information, is the way to better
enable VOs to cooperate in resource discovery. Adding semantic information to resource descriptions also allows
improving precision of a discovery service that should be able to find best approximate matches usable for the requester
as it is unrealistic to expect requested and offered services to be exactly identical. Even though the use of semantic
information in resource discovery is very important for interoperability, it raises a problem ofsemantic interoperability,
i.e. it requires using common ontologies in service descriptions in order to reach semantic agreement.

Using semantic information for precise resource discovery in large-scale, dynamic and heterogeneous environ-
ments is a relatively new and fragmented research topic. We believe that more studies should be devoted to comparing
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relative merits of proposed approaches and architectures. We also believe that approaches to scalable resource discov-
ery in P2P systems can be useful for building scalable semantic-based resource discovery in Grids, in particular, for
building a distributed knowledge-base for resources descriptions as well as a distributed storage for ontologies. We
envision that resource discovery services that use P2P-based networks for scalable and reliable storage of semantic
information can appear soon in standard Grid middleware such as Globus and gLite. The distributed matchmaking and
semantic-based routing promise improvements in discovery precision and cost. We feel that agent-based techniques
and market-based approaches using semantic information in service description should be applied to P2P-based service
discovery solutions. Also, P2P-based service composition/workflow construction using semantic service descriptions
should be studied from the resource discovery respective, i.e. as a form of resource discovery.
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